

Laboratoire d'Études du Rayonnement et de la Matière en Astrophysique et Atmosphères

Atmospheric Remote Sensing and Molecular Spectroscopy (Vietnam School of Earth Observation)

Quy Nhon, Vietnam, 26-31 August 2018

Ground-based FTIR measurement technique for the monitoring of atmospheric pollutants and greenhouse gases

Yao Té (yao-veng.te@sorbonne-universite.fr)

Laboratoire d'Études du Rayonnement et de la Matière en Astrophysique et Atmosphères LERMA-IPSL, SU/CNRS/Observatoire de Paris/IPSL, UMR 8112 Case 76, 4 Place Jussieu, 75005 Paris, France

Introduction

and streng 1 1 1 1 1 1

NAME AND ADDRESS OF THE OWNER OF T

Importance of the atmosphere

Atmosphere

Atmospheric layers

(following temperature gradient)

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Why studying the stratosphere ?

Why studying the troposphere ?

Urban air pollution

➔ Anthropogenic emissions are stronger in large agglomerations introducing many air pollution events

→ 'Great Smog' of London in 1952
⇒ Winter pollution of SO₂ (+500%)
⇒ Related to mortality (4000 dead in 5 days)

→ With the increase of anthropogenic emissions due to the industrialization and the beginnings of car industry, more and more legislations appeared

- European directive limiting SO₂ emission in 1980 ⇒ Reduction of 10 times over 40 years
- European directive limiting CO emission in 2000 ⇒ Reduction of 10 times since 2000

How about the other trace gases or pollutants ?

Greenhouse gas monitoring

- World of 7 billion inhabitants
- Increasing need of energy

⇒ Anthropogenic emissions of greenhouse gas in constant increase

These emissions are responsible of the observed global climate warming (GIEC)

It is essential to quantify precisely their source and loss

- → 70% of fossil CO_2 emissions are located in urbanized areas
- → Installation of the measurements close to the emission sources
- → Development of ground-based networks : ICOS, TCCON, ...
- → Development of space missions : SCIAMACHY, GOSAT, OCO-2, TanSat, GOSAT-2, MicroCarb, MERLIN, OCO-3, ...

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Description of the LERMA Fourier Transform Spectrometer (FTS-Paris)

LERMA ground-based FTS at Paris megacity

- 3rd European largest megacity
- More than 2 million inhabitants in the city of Paris
- More than 10 million inhabitants in the Paris urban area

Tour Eiffel

FTS-Paris at Sorbonne Université campus [48.846°N, 2.356°E]

SAINT-DENIS

TCCON-Paris : the first TCCON site in an European megacity

Remote sensing in solar absorption configuration

The LERMA FTS-Paris installed @ Jussieu

FTS-Paris optical schematic

Data recorded by a Michelson interferometer

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Examples of Fourier Transform function

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Phase correction process

UV-VIS-IR configurations of the FTS-Paris

UV configuration

IR configuration

Spectral domain	28000-43000 cm ⁻¹		Internal source	Globar or QTH lamp			
External source	Xenon lamp		Doomenlittor	KBr : $450-4800 \text{ cm}^{-1}$			
Entrance window	v suprasil		Deamspiller				
Beamsplitter	tter UV quartz III		Entropoo	$KBr : 450-25000 \text{ cm}^{-1}$			
Detector	UV diode		window	$C_{2}E : 1850-14000 \text{ cm}^{-1}$			
	GAP diode		MCT datastor	$D_{2}^{*} = 2.5 \times 10^{10} \text{ cm} \text{Hz}^{1/2} \text{W}^{-1}$			
				$D^{*} > 2.5 \times 10^{20} \text{ CmHz}^{*} \text{ W}^{*}$			
VIS configuration			InSb detector	D*>1.5×10 ¹¹ cmHz ^{1/2} W ⁻¹			
Spectral domain	9500-25000 cm ⁻¹		InGaAs	NEP<5×10 ⁻¹² W/Hz ^{1/2}			
Internal source	QTH lamp NIR-VIS		detector				
Beamsplitter	Visible quartz II	7	HBr cell	NDACC Ref. #10			
Detector	Si diode		HCl cell	TCCON Ref. #15			

TCCON & NDACC configurations

Some atmospheric species observed by FTS-Paris (1)

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Some atmospheric species observed by FTS-Paris (2)

Radiative transfer algorithm

M E La La La La

STUDIE -

Radiative transfer model

Modelling of N₂O line @2482 cm⁻¹

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Importance of taking into account all species (1/2)

♦ Contribution of CH₄ ◆ Contribution of N₂O ♦ Contribution of H₂O 3.0x10⁻⁶ 2.5x10⁻⁶ Radiance (w/(cm².sr.cm⁻¹)) 2.0x10⁻⁶ 1.5x10⁻⁶ CH₄ N_2O 1.0x10⁻⁶ H₂O 5.0x10⁻⁷ 1238 1240 1242 1244 1246 1248 1250 1252 1254 Wavenumber (cm⁻¹)

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Importance of taking into account all species (2/2)

• Contribution of CH_4 , N_2O and H_2O

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Parameters used by the radiative transfer algorithm

- Spectroscopic parameters HITRAN (line position & intensity, air-broadening, ...)
- Vertical profile of temperature and pressure (NCEP, ECMWF, sounding)
- A priori vertical profile of studied species (WACCM, climatology)
- Taking into account the Instrument Line Shape
- Taking into account H₂O continuum effect
- Taking into account line mixing effect
- Taking into account the line of sight

- ◆ Line by line calculation of the theoretical spectrum
- Adjustment of the theoretical spectrum to the measured one
- Species total column and/or profile

Vertical profile of VMR

Total column

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement techni

HITRAN database: spectroscopic parameters

52 2099.710100 9.534E-22 1.067E+01.07970.086 0.00000.76-.001555 54 2101.102700 1.086E-22 1.850E+01.06760.075 37.47690.74-.003090 55 2101.264000 2.391E-24 1.528E+01.05270.057 533.92830.68-.002870 55 2101.278200 1.283E-29 3.084E+01.04570.047 3256.54970.67-.003000 51 2101.342400 1.798E-23 3.736E+01.06760.075 2181.36920.74-.003090 53 2101.386300 5.862E-26 3.046E+01.05800.064 2255.40110.75-.001647 54 2101.424200 6.301E-27 2.771E+01.07090.079 2127.43750.74-.002620 52 2102.052800 3.409E-25 3.037E+01.05890.066 2227.19410.75-.001568 56 2102.162400 3.799E-29 3.089E+01.05270.057 2610.70340.68-.002870 56 2102.490400 1.567E-24 1.514E+01.05800.064 161.00290.75-.002550 53 2102.911800 4.821E-22 1.376E+01.07090.079 10.98570.74-.001928 51 2103.269700 3.250E-19 1.730E+01.05800.064 211.40410.75-.003570 52 2103.320400 1.876E-21 1.287E+01.07480.082 3.67590.75-.001963 55 2103.846800 8.477E-30 3.099E+01.04510.046 3349.64060.67-.003000 55 2104.160400 1.864E-24 1.538E+01.05190.056 596.68130.67-.002650 53 2104.650600 5.416E-26 3.075E+01.05730.063 2291.67320.75-.001578 54 2104.950800 8.780E-23 1.954E+01.07090.079 22.48670.74-.002030 54 2105.002900 7.972E-27 2.889E+01.06760.075 2138.57960.74-.002530 56 2105.091000 2.947E-29 3.107E+01.05190.056 2674.43240.67-.002650 51 2105.256600 1.455E-23 3.945E+01.07090.079 2166.13050.74-.002030 52 2105.362800 3.236E-25 3.069E+01.05800.064 2259.96680.75-.001528 56 2105.716500 1.451E-24 1.527E+01.05730.063 196.76960.75-.002540 55 2106.381600 5.501E-30 3.113E+01.04460.045 3446.14830.67-.003000 53 2106.442800 6.105E-22 1.435E+01.06760.075 21.97100.74-.001918 52 2106.897800 2.720E-21 1.386E+01.07090.079 11.02760.74-.001945 55 2107.024300 1.425E-24 1.547E+01.05100.055 662.90640.67-.002790 51 2107.423200 3.531E-19 1.750E+01.05890.066 172.97800.75-.003590 53 2107.880900 4.876E-26 3.101E+01.05670.062 2331.56740.74-.001579 56 2107.985700 2.241E-29 3.125E+01.05100.055 2741.68710.67-.002790 54 2108.547300 9.287E-27 2.969E+01.06500.073 2153.43510.74-.002660

0	R	0	467664	2	2	2	2	1	6	6.0	2.0
0	P	4	467663	2	2	2	2	1	1	42.0	54.0
0	R	17	467663	2	2	2	2	1	1	74.0	70.0
1	R	26	466623	2	2	2	2	1	1	110.0	106.0
1	P	4	467663	2	2	2	2	1	1	7.0	9.0
1	R	9	467664	2	2	2	2	1	6	21.0	19.0
1	R	2	467663	2	2	2	2	1	1	42.0	30.0
1	R	8	467664	2	2	2	2	1	6	38.0	34.0
1	R	17	467663	2	2	2	2	1	1	444.0	420.0
0	R	9	467663	2	2	2	2	1	1	252.0	228.0
0	R	2	467664	2	2	2	2	1	6	7.0	5.0
0	P	10	467663	2	2	2	2	1	1	19.0	21.0
0	R	1	467664	2	2	2	2	1	6	10.0	6.0
1	R	27	466623	2	2	2	2	1	1	114.0	110.0
0	R	18	467663	2	2	2	2	1	1	78.0	74.0
1	R	10	467664	2	2	2	2	1	6	23.0	21.0
0	P	3	467663	2	2	2	2	1	1	30.0	42.0
1	R	3	467663	2	2	2	2	1	1	54.0	42.0
1	R	18	467663	2	2	2	2	1	1	468.0	444.0
1	P	3	467663	2	2	2	2	1	1	5.0	7.0
1	R	9	467664	2	2	2	2	1	6	42.0	38.0
0	R	10	467663	2	2	2	2	1	1	276.0	252.0
1	R	28	466623	2	2	2	2	1	1	118.0	114.0
0	R	3	467664	2	2	2	2	1	6	9.0	7.0
0	R	2	467664	2	2	2	2	1	6	14.0	10.0
0	R	19	467663	2	2	2	2	1	1	82.0	78.0
0	P	9	467663	2	2	2	2	1	1	17.0	19.0
1	R	11	467664	2	2	2	2	1	6	25.0	23.0
1	R	19	467663	2	2	2	2	1	1	492.0	468.0
4	р	4	167662	2	2	2	2	1	1	66.0	E4 0

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

2

Temperature/pressure

Carbon monoxide (CO)

Finite optical path difference effect

The measured spectrum is the convolution of the incident spectrum with the ILS function

Fitting concentrations in column

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, Wavenumbers (cm⁻¹)

Fitting concentrations in profile

ILS function characterization

I HILLER F

A ST IL DON NO.

Optical alignment of FTS-Paris

→ Alignment of both fixed and mobile mirrors (reflectors)

→ Their axis should be parallel for each instant along the optical path (between ZPD and MPD)

→ Newton rings should be contrasted and centered (almost fixed in position)
Instrument Line Shape and HCl gas cell

HCl gas cell #15 (February 2013) - Pressure ~ 5 mbar - Column ~ 1.35×10²² molecule.m⁻²

Symmetrical ILS

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Instrument performances stability

➔ Normalized modulation of the ILS function should be lower than 5%

Modulation close to 1.05Optical alignment in Feb. 2016

Té et al., Course on Atmospheric composition monitoring by

NDACC-IRWG measurement (Atmospheric pollutants monitoring by FTS-Paris over Paris megacity)

Official species provided by the NDACC-IRWG network: O₃, CH₄, C₂H₆, ClONO₂, CO, HCl, HCN, N₂O, HNO₃, HF

OCS (or COS) retrieval (balloon & ground-based)

→ OCS is the most abundant sulphur compound in the atmosphere and an important precursor of sulphate aerosols

(Krysztofiak et al., Atmosphere-Oean, 2014)

⇒ OCS seasonality over Paris obtained by the FTS-Paris instrument

H₂CO retrieval (seasonality and trends)

- Sources : intermediate product of hydrocarbon degradation (methane, VOC), biomass burning; combustion engine, ... 3.44 Arbitrairy - Loss : photosynthesis, OH oxidation, soil 3.40 Observed 3,36 Calc. (without H₂CO) \rightarrow First retrieval of H₂CO using Calc. (with H₂CO) 3.32 FTS-Paris data by C. Veras (master 0.02 student) ⇒ Signal very small 0.01 0.00 (retrieval in column) -0.01 Diff. (without H₂CO) -0.02 Retrieved total column of H^{2}_{2} CO (molecules m^{2}) Diff. (with H₂CO) Seasonality fit -0.03 1.6x10²⁰ 2869,6 2870,0 2870.2 2869,4 2869.8 Wavenumber (cm⁻¹) (Té et al., ASA-HITRAN 2012) 1.2x10²⁰ → New harmonized global study 8.0x10¹⁹ conducted by the NDACC-IRWG network, cf. Vigouroux et al. (2018) $4.0x10^{19}$ \Rightarrow Seasonality peak of 88% ⇒ No observed trends (fluctuation 0.0 too large) 2012 2013 2014 2016 2011 2015 Year

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

[correlation]

CH₄ and N₂O retrievals

[correlation]

CO retrieval

(Figure from Té et al., JAOT 2012)

Characterization of CO retrieval error

I II I I I I I I

Ground-based versus Space

1 to to

ALST TRUE PA

					→ FTS-Paris measurement
Date	FTS-Paris	IASI-a ^(*)		IASI-b ^(**)	
2009-07-01	2.06±0.04	2.05±0.16		2.11±0.09	
2009-07-13	1.73±0.02	2.23±0.09		2.73±0.11	
2009-07-16	1.62±0.03	1.90±0.09		2.43±0.11	
2010-02-16	2.45±0.05	2.40±0.14		2.53±0.14	
2010-03-02	2.57±0.05	2.68±0.11		2.63±0.10	
2010-07-07	1.95±0.05	2.15±0.10		2.09±0.10	
2010-10-11	1.81±0.03	1.62±0.11		none	
2011-03-08	2.77±0.05	2.35±0.12		2.44±0.10	
2011-04-19	2.21±0.04	1.91±0.06		2.07±0.05	
2011-04-20	2.38±0.03	2.18±0.07		2.22±0.05	IASI-MetOp measurement
2011-04-21	2.23±0.03	1.94±0.06		2.07±0.05	Donis downtown
2011-04-22	2.15±0.06	1.93±0.06		none	
2011-04-26	2.54±0.04	2.10±0.06		2.22±0.05	
2011-05-04	2.83±0.04	2.48±0.06		none	
2011-05-05	2.13±0.02	2.36±0.06		2.38±0.05	
2011-05-06	2.33±0.05	none		none	
2011-05-12	2.16±0.05	none		none	
2011-05-13	2.35±0.03	2.28±0.05		2.26±0.05	
2011-05-25	2.06±0.03	1.97±0.05		2.04±0.05	IASI-MetOp measurement
* All morning of and longitude	overpasses arou	nd lie de Fra to a 100 km	$\frac{1}{\times 1}$	$(\pm 0.5^\circ$ in latitude 00 km square re	~100 km × 100 km

and longitude corresponding to a 100 km \times 100 km square region centered on QualAir platform location).

** Overpasses inside Paris "downtown" ($\leq \pm 0.15^{\circ}$ in latitude and longitude).

(Té et al., ESA Publications, 2012)

Date	FTS-Paris	IASI-a ^(*)	IASI-b ^(**)
2009-07-01	2.06±0.04	2.05±0.16	2.11±0.09
2009-07-13	1.73±0.02	2.23±0.09	2.73±0.11
2009-07-16	1.62±0.03	1.90±0.09	2.43±0.11
2010-02-16	2.45±0.05	2.40±0.14	2.53±0.14
2010-03-02	2.57±0.05	2.68±0.11	2.63±0.10
2010-07-07	1.95±0.05	2.15±0.10	2.09±0.10
2010-10-11	1.81±0.03	1.62±0.11	none
2011-03-08	2.77±0.05	2.35±0.12	2.44±0.10
2011-04-19	2.21±0.04	1.91±0.06	2.07±0.05
2011-04-20	2.38±0.03	2.18±0.07	2.22±0.05
2011-04-21	2.23±0.03	1.94±0.06	2.07±0.05
2011-04-22	2.15±0.06	1.93±0.06	none
2011-04-26	2.54±0.04	2.10±0.06	2.22±0.05
2011-05-04	2.83±0.04	2.48±0.06	none
2011-05-05	2.13±0.02	2.36±0.06	2.38±0.05
2011-05-06	2.33±0.05	none	none
2011-05-12	2.16±0.05	none	none
2011-05-13	2.35±0.03	2.28±0.05	2.26±0.05
2011-05-25	2.06±0.03	1.97±0.05	2.04±0.05

* All morning overpasses around Ile de France ($\pm 0.5^{\circ}$ in latitude and longitude corresponding to a 100 km \times 100 km square region centered on QualAir platform location).

** Overpasses inside Paris "downtown" (<±0.15° in latitude and longitude).

(Té et al., ESA Publications, 2012)

⇒ Good agreement between ground and satellite FTIR measurements

⇒ Except for 5 days :

- 13/07/2009
- 16/07/2009
- 11/10/2010
- 22/04/2012
- 04/05/2011

Date	FTS-Paris	IASI-a ^(*)	IASI-b ^(**)
2009-07-01	2.06±0.04	2.05±0.16	2.11±0.09
2009-07-13	1.73±0.02	2.23±0.09	2.73±0.11
2009-07-16	1.62±0.03	1.90±0.09	2.43±0.11
2010-02-16	2.45±0.05	2.40±0.14	2.53±0.14
2010-03-02	2.57±0.05	2.68±0.11	2.63±0.10
2010-07-07	1.95±0.05	2.15±0.10	2.09±0.10
2010-10-11	1.81±0.03	1.62±0.11	none
2011-03-08	2.77±0.05	2.35±0.12	2.44±0.10
2011-04-19	2.21±0.04	1.91±0.06	2.07±0.05
2011-04-20	2.38±0.03	2.18±0.07	2.22±0.05
2011-04-21	2.23±0.03	1.94±0.06	2.07±0.05
2011-04-22	2.15±0.06	1.93±0.06	none
2011-04-26	2.54±0.04	2.10±0.06	2.22±0.05
2011-05-04	2.83±0.04	2.48±0.06	none
2011-05-05	2.13±0.02	2.36±0.06	2.38±0.05
2011-05-06	2.33±0.05	none	none
2011-05-12	2.16±0.05	none	none
2011-05-13	2.35±0.03	2.28±0.05	2.26±0.05
2011-05-25	2.06±0.03	1.97±0.05	2.04±0.05

* All morning overpasses around Ile de France ($\pm 0.5^{\circ}$ in latitude and longitude corresponding to a 100 km \times 100 km square region centered on QualAir platform location).

** Overpasses inside Paris "downtown" (<±0.15° in latitude and longitude).

(Té et al., ESA Publications, 2012)

⇒ For the last 3 days :
- 11/10/2010
- 22/04/2012
- 04/05/2011

⇒ Meas._{FTS-Paris} > Meas._{IASI-MetOp}

- Co-location less satisfying (satellite footprint beyond 30 km from the center of Paris)

- In this case, local emissions are not sounded by the satellite instrument IASI-MetOp

Date	FTS-Paris	IASI-a ^(*)	IASI-b ^(**)
2009-07-01	2.06±0.04	2.05±0.16	2.11±0.09
2009-07-13	1.73±0.02	2.23±0.09	2.73±0.11
2009-07-16	1.62±0.03	1.90±0.09	2.43±0.11
2010-02-16	2.45±0.05	2.40±0.14	2.53±0.14
2010-03-02	2.57±0.05	2.68±0.11	2.63±0.10
2010-07-07	1.95±0.05	2.15±0.10	2.09±0.10
2010-10-11	1.81±0.03	1.62±0.11	none
2011-03-08	2.77±0.05	2.35±0.12	2.44±0.10
2011-04-19	2.21±0.04	1.91±0.06	2.07±0.05
2011-04-20	2.38±0.03	2.18±0.07	2.22±0.05
2011-04-21	2.23±0.03	1.94±0.06	2.07±0.05
2011-04-22	2.15±0.06	1.93±0.06	none
2011-04-26	2.54±0.04	2.10±0.06	2.22±0.05
2011-05-04	2.83±0.04	2.48±0.06	none
2011-05-05	2.13±0.02	2.36±0.06	2.38±0.05
2011-05-06	2.33±0.05	none	none
2011-05-12	2.16±0.05	none	none
2011-05-13	2.35±0.03	2.28±0.05	2.26±0.05
2011-05-25	2.06±0.03	1.97±0.05	2.04±0.05

* All morning overpasses around Ile de France ($\pm 0.5^{\circ}$ in latitude and longitude corresponding to a 100 km \times 100 km square region centered on QualAir platform location).

** Overpasses inside Paris "downtown" (<±0.15° in latitude and longitude).

(Té et al., ESA Publications, 2012)

⇒ For the first 2 days :
 - 13/07/2009
 - 16/07/2009

⇒ Meas._{IASI-MetOp} > Meas._{FTS-Paris}

⇒ Difference 7 for a better co-location (between columns 2 and 4)

Date	FTS-Paris	IASI-a ^(*)	IASI-b ^(**)
2009-07-01	2.06±0.04	2.05±0.16	2.11±0.09
2009-07-13	1.73±0.02	2.23±0.09	2.73±0.11
2009-07-16	1.62±0.03	1.90±0.09	2.43±0.11
2010-02-16	2.45±0.05	2.40±0.14	2.53±0.14
2010-03-02	2.57±0.05	2.68±0.11	2.63±0.10
2010-07-07	1.95±0.05	2.15±0.10	2.09±0.10
2010-10-11	1.81±0.03	1.62±0.11	none
2011-03-08	2.77±0.05	2.35±0.12	2.44±0.10
2011-04-19	2.21±0.04	1.91±0.06	2.07±0.05
2011-04-20	2.38±0.03	2.18±0.07	2.22±0.05
2011-04-21	2.23±0.03	1.94±0.06	2.07±0.05
2011-04-22	2.15±0.06	1.93±0.06	none
2011-04-26	2.54±0.04	2.10±0.06	2.22±0.05
2011-05-04	2.83±0.04	2.48±0.06	none
2011-05-05	2.13±0.02	2.36±0.06	2.38±0.05
2011-05-06	2.33±0.05	none	none
2011-05-12	2.16±0.05	none	none
2011-05-13	2.35±0.03	2.28±0.05	2.26±0.05
2011-05-25	2.06±0.03	1.97±0.05	2.04±0.05

* All morning overpasses around Ile de France ($\pm 0.5^{\circ}$ in latitude and longitude corresponding to a 100 km \times 100 km square region centered on QualAir platform location).

** Overpasses inside Paris "downtown" (<±0.15° in latitude and longitude).

(Té et al., ESA Publications, 2012)

Atmosphere as a Lab: O₃ spectroscopic parameters analysis

STILL -

Motivations

Atmospheric ozone concentration sounded by different instrumentations
 ⇒ from different platforms (ground, balloon, satellite ...)

 \Rightarrow in different spectral domains (UV & IR)

- Despite long years measurements efforts, 1% uncertainty in absolute line intensities not reached

=> Multispectral inter-comparison using both laboratory and atmospheric studies reveal important discrepancies in databases

Spectral windows used for the ozone retrieval

Three spectroscopic databases studied: HITRAN2012, GEISA2011, S&MPO2015
Six days of atmospheric measurements

Ozone retrieval @10 µm

 \Rightarrow Good agreement between G11 and H12 with discrepancies ~0.6%

 \Rightarrow Good agreement between S15 and H12 with discrepancies ~0.3%

Ozone retrieval @5 µm

⇒ HITRAN2012: agreement with 10 µm data within ±2%, but disagreement of [5-1] vs. others ⇒ GEISA2011: good self consistency, bias of ~4% with respect to HITRAN 5 µm ⇒ S&MPO2015: best self consistency, bias within ±1 % with respect to HITRAN 5 µm ⇒ Recommendation on O₃ taken into account in HITRAN 2016

SMO₃ project

- Spectroscopie Multi-spectrale de l'Ozone (SMO₃)
- Funding from INSU LEFE-CHAT
- Relative and absolute line intensities (UV & IR)
- Lab & atmospheric measurements & ab-initio calculation (MONARIS, GSMA)

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

First evidence of a time lag between surface and free tropospheric CO seasonal variations

Motivations (1/2)

- CO is an important trace gas (toxicity and impact on air quality)
- Global increase of CO
 ⇒ global decrease of OH
 ⇒ increase of other harmful trace gases
 (atmospheric pollutants, greenhouse gases sensitive to oxidation as methane)
- Many scientific studies have shown the seasonal variability of CO
- What can be learned from still another study ?

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Motivations (2/2)

<u>Here</u>

- CO seasonal variability between 2009 and 2013

@ Paris site (NH)@ Jungfraujoch site (NH)@ Wollongong site (SH)

Seasonality from CO columns obtained from FTIR measurements

VERSUS

Seasonality from surface in situ measurements

Might not be the same

- Comparison to satellite measurements (IASI-MetOp & MOPITT)
- Comparison to GEOS-Chem model simulations

Three ground-based FTIR sites

<u>FTS-Paris</u>	Jungfraujoch FTIR	Wollongong FTIR
 Located at the UPMC University in the center of Paris Urban megacity site TCCON station 		 Located at Wollongong University Moderate pollution site NDACC & TCCON station
	 Located at the ISSJ Remote high-altitude site NDACC station 	

Total column seasonal variability (1/2)

Consistency of the observed CO seasonality with previous FTIR studies (Rinsland *et al.*, Zhao *et al.*, Barret *et al.*, ...)

Total column seasonal variability (2/2)

(Té et al., ACP, 2016)

Good agreement between ground-based FTIR, satellites and GEOS-Chem for the CO seasonal variability
 But underestimation of about 20% by the model (probably due to the currently implemented inventories)

Mesure FTIR versus mesure in situ

GEOS-Chem simulations : sources identification (1/2)

- To study the impact of the different sources of CO, three specific simulations were performed by turning off individually

 \Rightarrow the biomass burning emission sources

 \Rightarrow the biogenic emission sources

 \Rightarrow the anthropogenic emission sources

GEOS-Chem simulations : sources identification (2/2)

⇒ The CO seasonality at Paris and Jungfraujoch is mainly driven by anthropogenic emission → Time-lag of 2 months between surface and column

⇒ The CO seasonality at Wollongong is influenced by remote or uniformly distributed biogenic and biomass burning emission sources → No significant time-lag observed

TCCON measurement (Greenhouse gases monitoring by FTS-Paris & Satellite validation)

Dry-Air mole fractions of CO₂, CO, N₂O, CH₄, H₂O, HDO and HF

Total Carbon Column Observing Network (TCCON) 2005

→ TCCON network has started in 2005 with only 5 sites dedicated to greenhouse gases observation

This work by Dietrich Feist is licensed under a Creative Commons Attribution 4.0 International License

Total Carbon Column Observing Network (TCCON) 2016

→ TCCON network has grown strongly : 25 sites over the world

- Absolute measurements
- X_{CO2} accuracy at 0.5 ppmv or 0.1% (dry air mole fraction of CO₂)

TCCON-Paris, the first TCCON site in an European megacity

- → Paris agglomeration is the 3rd largest megacity in Europe
- → The FTS-Paris instrument joint the network in 2014
- → TCCON = international network using and /or following :

⇒ Same kind of instrumentation (IFS model from Bruker industry)

⇒ Same optical alignment method

⇒ Same radiative transfer code (GFIT)

https://tccon-wiki.caltech.edu/Sites/Paris

>	Indianapolis	
þ	Izaña	
>	Jena	
>	JPL	
>	Karlsruhe	
>	Lamont	
>	Lauder	
>	Manaus	
>	Nv-Ålesund	
>	Orléans	
>	Oxfordshire	
	Paris	
•	Paris	
-	Paris Instrument History	
~	Paris Instrument History Park Falls	
> > >	Paris Instrument History Park Falls Poker Flat	
> ^ ^ ^	Paris Instrument History Park Falls Poker Flat Reunion Island	
5 A A A A	Paris Instrument History Park Falls Poker Flat Reunion Island Rikubetsu	
	Paris Instrument History Park Falls Poker Flat Reunion Island Rikubetsu Saga	
	Paris Instrument History Park Falls Poker Flat Reunion Island Rikubetsu Saga Sodankylä	
5 A A A A A A A	Paris Instrument History Park Falls Poker Flat Reunion Island Rikubetsu Saga Sodankylä Tsukuba	
5 A A A A A A A A	Paris Instrument History Park Falls Poker Flat Reunion Island Rikubetsu Saga Sodankylä Tsukuba Wollongong	
· · · · · · · · · ·	Paris Instrument History Park Falls Poker Flat Reunion Island Rikubetsu Saga Sodankylä Tsukuba Wollongong Yekaterinburg	

Paris, France

TCCON Status: Provisional

^{48.846°} N, 2.356° E, 60 meters above sea level

FTS-Paris : Bruker IFS 125HR

Operated by LERMA (Laboratoire d'Etudes du Rayonnement Atmosphères, UMR 8112), Université Pierre et Marie Curie / Collaborators : Yao Té (PI), Pascal Jeseck, Christof Janssen

Té et al., Course on Atmospheric composition monitoring by ground-bas

GFIT radiative transfer code

- Actual version of GFIT : GGG2014
- Line-by-line algorithm developed by Geoff Toon (Wunch et al. 2011)
- Forward model and inversion model in column (scaling)
- Voigt line profile
- NCEP profiles of pressure, temperature and $\rm H_2O$
- Semi-empirical a priori profiles, ...

- **Results in 'dry air mole fraction'** *Xgas* defined by : $Xgas = 0.2095 \frac{colonne_{gas}}{colonne_{O2}}$

→ XCO₂ seasonality and trends over Paris megacity

➔ TCCON data are calibrated to the WMO standard (World Meteorological Organization)

TCCON XCO₂ (seasonality & trends)

Calibration of TCCON data

→ Aircraft flight over TCCON stations boarding *in situ* instruments related to the WMO standard

→ TCCON data compared to aircraft measurements

Relevance of TCCON for greenhouse gas measurements by satellites

- Validation of satellite data (spatial bias, temporal drift)
- Indirect calibration of satellite data versus *in situ* WMO standard

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

On going satellite instruments validation

→ TCCON-Paris station selected since July 2015 to validate the 'Target' mode of OCO-2

⇒ Characterization of possible
bias related to the latitude,
To the surface properties,
to the aerosol scattering, ...)

(Wunch et al., AMT, 2017)

➔ Contribution to validate the Japanese instrument TANSO-FTS onboard GOSAT

(Uchino et al., TCCON meeting, 2018)

Date: 2016-03-11 X_{CO2} scale: max = 410 ppmv - min = 400 ppmv; TCCON X_{CO2}: 408.2 ppmv

→ Contribution to validate the European instrument TROPOMI onboard Sentinel 5P (Sha et al., EGU, 2018), (Vigouroux et al., EGU, 2018)

→ Contribution to validate the radiative transfer algorithm RemoTeC (Wu et al., AMT, 2018)

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy Nhon, 26-31 August 2018

Upcoming GHG measurement @Paris

→ Involvement in the preparation and the validation of coming up space missions (MicroCarb, MERLIN, IASI-NG, GOSAT-2, OCO-3, Sentinel 7, ...)

→ Importance of the greenhouse gas in global warming

➔ More and more complex atmospheric modelling

⇒ Increasing need of more and more precise and accurate data

- → Set-up of the French COCCON consortium (Collaborative Carbon Column Observing Network)
 - ⇒ COCCON measurement using low resolution EM27/sun instrument
 - ⇒ Mobile EM27/sun instrument
 - \Rightarrow TCCON site by site bias study
 - \Rightarrow High and unique potential when deploying few EM27/sun
 - ⇒ Validation of satellite instruments
 - \Rightarrow Contribution of better quantify CO₂ emission fluxes

EM27/sun instrument (COCCON measurement)

- Rock SolidTM pendulum interferometer
 - 2 cube corners
 - CaF₂ beamsplitter
- MOPD: 1,8 cm; resolution: 0,5 cm⁻¹
- Double sided interferograms
- InGaAs detector
 - Spectral range: 4000 cm⁻¹ 9000 cm⁻¹
- SemiFOV: 2.36 mrad
- Standard non frequency-stabilized HeNe reference laser
- Dimensions: 35 x 40 x 27 cm
- Mass: ~25 kg with tracker
- Tracker unit including tracking software developed by M. Gisi

COCCON campaign @Paris

→ Collaborative Carbon Column Observing Network

➔ Measurement during Spring 2015

➔ 5 EM27/sun deployed around Paris

 $\Rightarrow \text{Impact of urban} \\ \text{emission on atmospheric} \\ \text{CO}_2 \text{ and } \text{CH}_4$

Té et al., Course on Atmospheric composition monitoring by ground-based FTIR measurement technique, Quy NI

Daily XCO₂ and XCH₄ [07/05/2015]

SCIENCES m SORBONNE UNIVERSITÉ

2017 Annual Joint NDACC-IRWG & TCCON meeting hosted by the LERMA at the TCCON-Paris station

Station Pierre Sciences de 'environnement Simon Laplace Jussieu

CIIIS

Institut

Laboratoire d'Études du Rayonnement et de la Matière en Astrophysique et Atmosphères