

14TH RENCONTRES DU VIETNAM ATMOSPHERIC REMOTE SENSING AND MOLECULAR SPECTROSCOPY AUGUST 26-31, 2018, QUY NHON, VIETNAM

Examining Split Window algorithm to Landsat 8 for mapping Sea Surface Temperature

Dr. NGUYEN THI THUY HANH
Falcuty of Surveying, Mapping and GIS
Hanoi University of Natural Resources and Environment

CONTENTS

Conclusions Results and Materials Introduction **Discussion** and **Methods**

❖ What is SST?

The infrared emission from the ocean originates from the uppermost <1mm of the ocean – the skin layer.

The atmosphere is in contact with the top of the skin layer.

Ocean-to-atmosphere heat flow through the skin layer is by molecular conduction: this causes, and results from, a temperature gradient through the skin layer.

Conventional measurements of SST are from submerged thermometers "bulk" temperature.

Tdepth below the influence of diurnal heating is the "foundation"

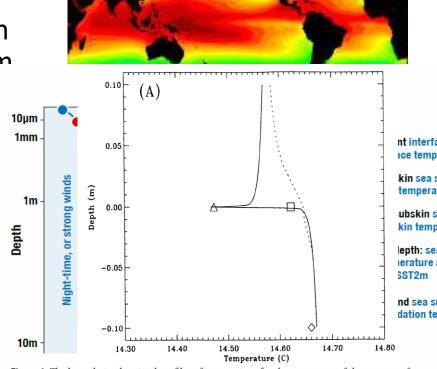


Figure 1: The hypothetical vertical profiles of temperature for the upper 10m of the ocean surface in high wind speed conditions or during the night (red) and for low wind speed during the day (blac

41 A Phy Dien Boad Phy Dien Ward Rac Tu Liem Dist Hanoi

Essential Climate Variables

News	
About GC	os
✓ Climate	Observation Needs
UNFCC	and GCOS
UNFCC	C Guidelines
GCOS F	Reports to UNFCCC
▶ Essent Variable	ial Climate es
Climate	Monitoring Principles
Observing	Systems and Data
Activities	
Partners	
Outreach	
Contact	

GCOS Essential Climate Variables

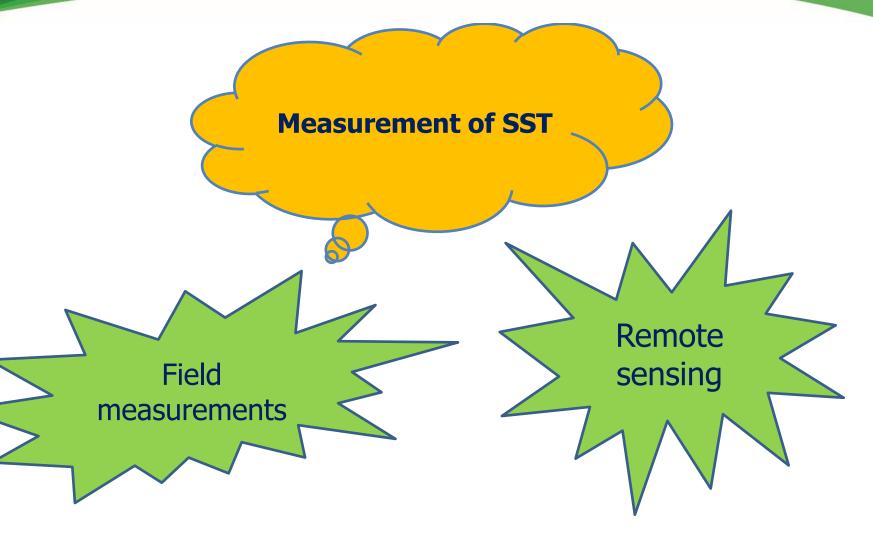
The Essential Climate Variables (ECVs;) are required to support the work of the UNFCCC and the IPCC. All ECVs are technically and economically feasible for systematic observation. It is these variables for which international exchange is required for both current and historical observations. Additional variables required for research purposes are not included in this table. It is emphasized that the ordering within the table is simply for convenience and is not an indicator of relative priority. Currently, there are 44 ECVs plus soil moisture recognized as an emerging ECV.

Domain	Essential Clim	Essential Climate Variables		
	Surface:	Air temperature, Precipitation, Air pressure, Surface radiation budget, Wind speed and direction, Water vapour.		
Atmospheric (over land, sea and ice)	Upper-air:	Earth radiation budget (including solar irradiance), Upper-air temperature (including MSU radiances), Wind speed and direction, Water vapour, Cloud properties.		
	Composition:	Carbon dioxide, Methane, Ozone, Other long-lived greenhouse gases[1], Aerosol properties.		
Oceanic	Surface:	Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Current, Ocean colour (for biological activity), Carbon dioxide partial pressure.		
	Sub-surface:	Temperature, Salinity, Current, Nutrients, Carbon, Ocean tracers, Phytoplankton.		
Terrestrial[2]	caps, Permafr vegetation type	e, Water use, Ground water, Lake levels, Snow cover, Glaciers and ice tost and seasonally-frozen ground, Albedo, Land cover (including a), Fraction of absorbed photosynthetically active radiation (fAPAR), (LAI), Biomass, Fire disturbance, Soil moisture[3].		

41 A Dhu Dian Boad Dhu Dian Ward Rac Tu Liam Diet Hansi

Essential Climate Variables

The Essential Climate Variables (ECVs;) are required to support the work of the UNFCCC and the IPCC. All ECVs are technically and economically feasible for systematic observation. It is these variables for which international exchange is required for both current and historical observations. Additional variables required for research purposes are not included in this


Sea-surface temperature splus soil moisture recognized as an emerging ECV

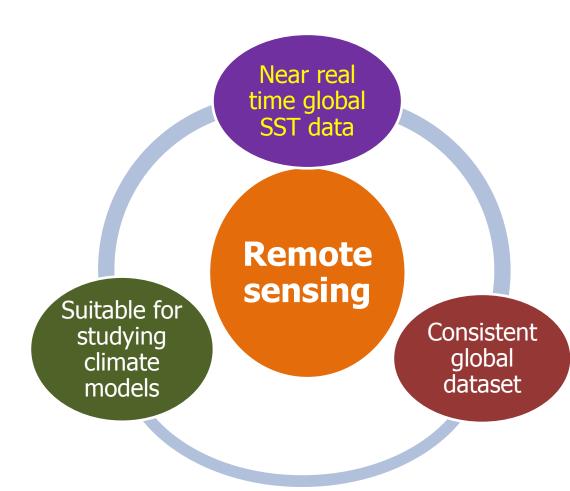
Variables		-39	
Climate Monitoring Principles		Surface:	Air temperature, Precipitation, Air pressure, Surface radiation budget,
bserving Systems and Data			Wind speed and direction, Water vapour.
ctivities			
artners	Atmospheric (over land, sea	Upper ir	Earth radiation budget (including solar irradiance), Upper-air moverature (including MSU radiances), Wind speed and direction,
utreach	and ice)		Water value: Cloud properties.
ontact			
		Composition:	Carbon dioxide, Methane, Ozone, Other long-lived greenhouse gases[1], Aerosol properties.
	Oceanic	Surface:	Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Current, Ocean colour (for biological activity), Carbon dioxide partial pressure.
		Sub-surface:	Temperature, Salinity, Current, Nutrients, Carbon, Ocean tracers, Phytoplankton.
	Terrestrial[2]	River discharge, Water use, Ground water, Lake levels, Snow cover, Glaciers and caps, Permafrost and seasonally-frozen ground, Albedo, Land cover (includ vegetation type), Fraction of absorbed photosynthetically active radiation (fAPA Leaf area index (LAI), Biomass, Fire disturbance, Soil moisture[3].	

Hanoi University of Natural Resources and Environment

41 A Dhu Dian Bood Dhu Dian Word Boo Tu Liam Dist Honoi

Hanoi University of Natural Resources and Environment

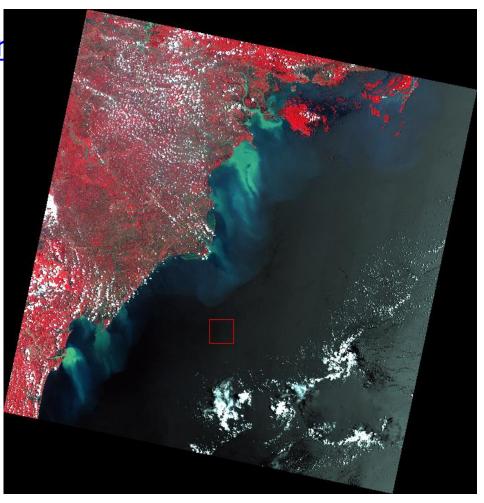
41 A Phy Dion Boad Phy Dion Ward Rac Tu Liom Diet Hanoi


Field measurements

Scarcity of observations

Different measurement methods

Hanoi University of Natural Resources and Environment


41 A Dhu Dian Bood Dhu Dian Word Boo Tu Liam Dist Honoi

> Data

- Landsat 8 (https://earthexplorg

ID of Data	LC81260462016
	204LGN00
Path	126
Row	046
Accquisition	23/07/2016
date	
Cloud	6.72%
coverage	

Spectral Bands	Wavelength(µm)	Spatial Res.(m)
Band 1- Coastal aerosol	0.43- 0.45	30
Band 2- Blue	0.45- 0.51	30
Band 3- Green	1	
Band 4- Red	0.8-	
Band 5- Near Infrared	Relative Spectral Response	
Band 6- SWIR 1	Spect Spect	TIRS Band 10
Band 7- SWIR 2	0.2-	TIRS Band 11
Band 8- Panchromatic	- Re	X\
Band 9: Cirrus	10 10.5 11 Way	11.5 12 12.5 13 relength (μm)
Band 10- Thermal Infrared	10.6- 11.19	100
Band 11- Thermal Infrared	11.50- 12.51	100

41 A Phy Dien Boad Phy Dien Ward Rac Tu Liem Diet Hangi

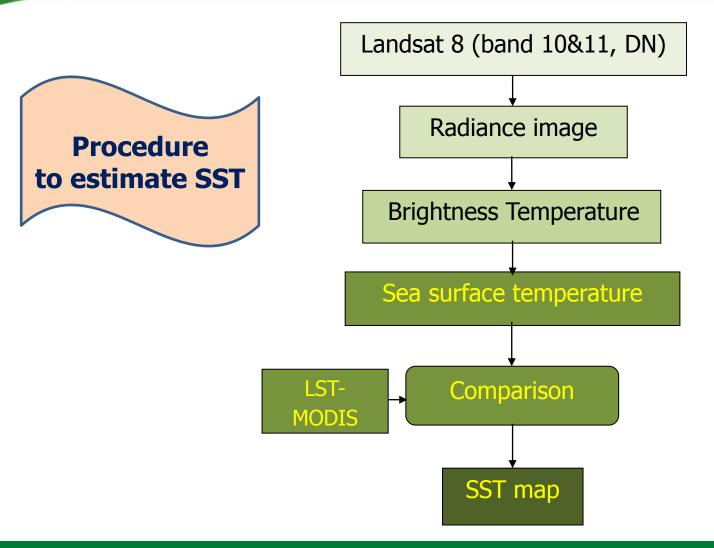
LST _ MODIS product by NASA freely download:

https://ladsweb.nascom.nasa.gov.

MYD11A1.A2016204.mosaic.006.2017207023616.mcrp_000

501161679.LST_Day_

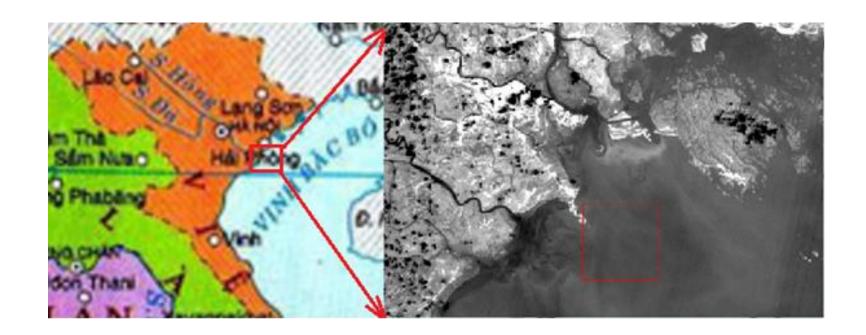
3436378)



> Algorithms

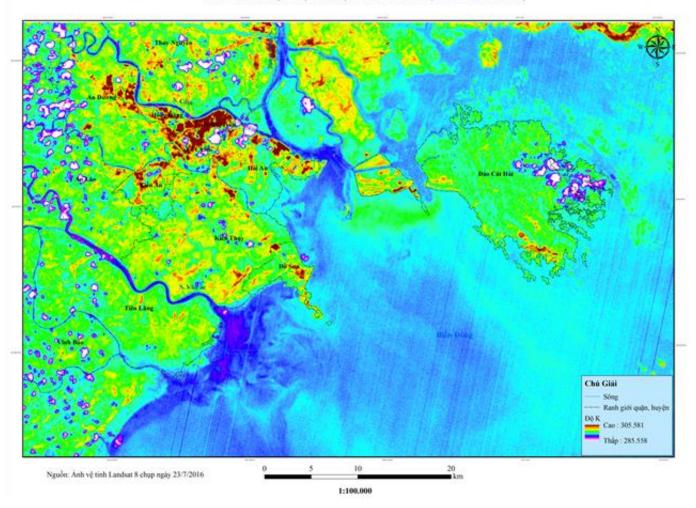
Algorithms	Wave length (µm)	Usage
Dual Window	3,7 and 11	Day
Split Window	11 and 12	Day & Night
Triple Window	3.7, 11 and 12	Day

$$MCSST = a_0 + a_1T_i + a_2(T_i - T_j)$$



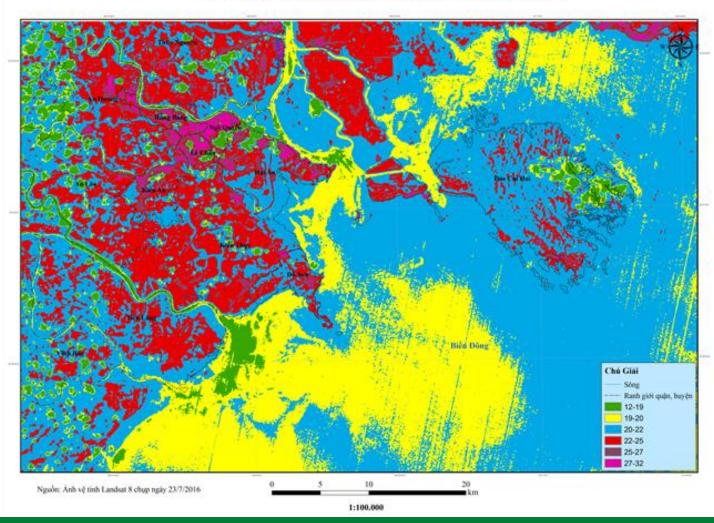
Hanoi University of Natural Resources and Environment

41 A Dhu Dian Road Dhu Dian Ward Rac Tu Liam Dist Hanoi



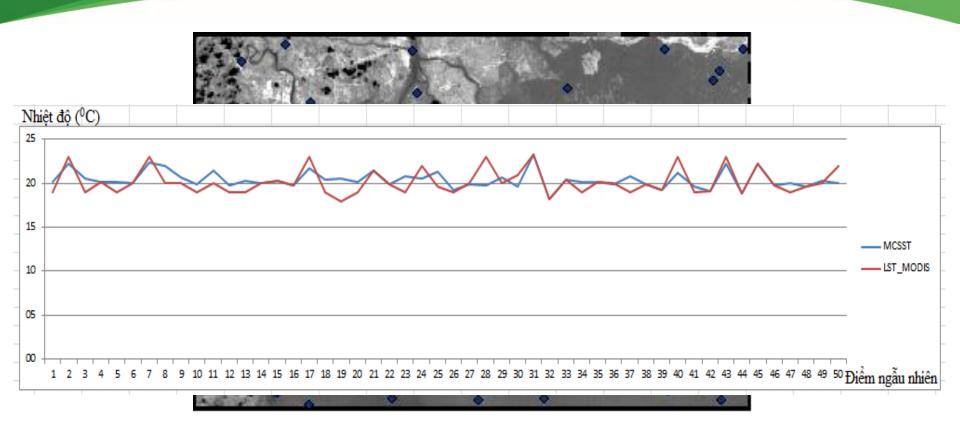
Location of area interested

BÁN ĐÓ NHIỆT ĐỘ BÈ MẶT BIỂN KHU VỰC ĐỒNG BẮC BỘ



Hanoi University of Natural Resources and Environment

41 A Dhu Dian Boad Dhu Dian Ward Bac Tu Liam Diet Hanai


BẢN ĐÔ NHIỆT ĐỘ BÈ MẶT BIỂN KHU VỰC ĐỒNG BẮC BỘ

Hanoi University of Natural Resources and Environment

41 A Dhu Dian Bood Dhu Dian Word Pac Tu Liam Diet Hansi

50 random points for comparision

Comparision SST-Landsat 8 to LST MODIS

CONCLUSIONS

The study produced SST map by employing Split Window algorithm to band 10 and band 11 of Landsat 8. As shown on the map, the farer coastal, the lower value of SST.

Comparision SST-Landsat and LST-MODIS showed that differences are around 0-3.2 °C and average difference is 0.73 °C. This suggests that Split Window algorithm have quite good fit to estimate SST from Landsat 8 data in the study area.

CONCLUSIONS

- ✓ Landsat 8 imagery can be used to study SST at a higher scale than previous satellite generations: NOAA and MODIS, etc. but Landsat 8 has lower temporal resolution.
- ✓ Further studies could utilize Landsat 8 to monitor STT change.

Limitation: The study lacked of in situ data to validate the results.

REFERENCES

- 3. Abraham, J.P. et al. (2013), "A review of global ocean temperature observations: implications for ocean heat content estimates and climate change", *Rev. Geophys*, 51, 450–483.
- 4. Hulley, G.C. et al. (2011), "Optimized split window coefficients for deriving surface temperatures from inland water bodies", *Remotes Sensing of Environment*
- 5. Kilpatrick, K.A., G.P Podesta, R. Evans (2001), "Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for Sea S urface temperature and associated matchup database", *Journal of Geophysical Research- Oceans*, 106 (C5), 9179-9197.
- 6. Lillesand, TM, Chipman JW, Kiefer RW (2012), *Remote sensing and Image interpretation,* Wiley India.
- 7. Minnett, P. J. (2001), "Satellite Remote Sensing of Sea Surface Temperatures ", *Encyclopedia of Ocean Sciences, Oxford: Academic Press*, pp. 2552–2563.
- 8. NASA (2013), "LANDSAT 8 Conversions to Radiance, Reflectance and At-Satellite Brightness Temperature".
- 9. USGS "Landsat Mission, (last access: 4:05 p.m, 0/12/2015), Available: http://landsat.usgs.gov/band-designations-landsat-satellites.php".
- 10. https://ladsweb.nascom.nasa.gov.
- 11. https://podaac.jpl.nasa.gov/SeaSurfaceTemperature.

Hanoi University of Natural Resources and Environment

11 A Phy Dien Road, Phy Dien Ward, Rac Tu Liem Diet, Hanoi