

Analysis of the diurnal cycle of vegetation using active and passive microwave satellite observations

DINH Thi Lan Anh (M1 General Physics)

Supervisor: **Dr. Catherine Prigent** (LERMA, Observatoire de Paris, CNRS)

Contents

- I. Introduction
- II. Datasets
- III. General analysis
- IV. Analysis of the diurnal cycle

 $\mathbf{2}$

V. Conclusion

I. INTRODUCTION

General context

- Microwave observations useful vegetation analysis
 - Less affected by clouds than visible & infrared
 - Operate day & night
- Diurnal change: vegetation structure/ water content, moisture, skin temperature, etc.
- Previous studies: Active /or Passive

Project objectives

- Global Precipitation Measurement (GPM)
- Both active & passive modes => diurnal cycles
- Compare to other studies; analyze passive vs active relationship

II. DATASETS

- Active mode
- o backscatter (dB)
- reflection of the signals
- Passive mode
- emissivity (unitless)
- effectiveness in emitting energy
- Calculation

 $\sigma^{0} = \sigma_{Surface}$ $T_{b} = T_{s} \times e \times \tau + T_{Upwelling} + T_{Downwelling} \times (1 - e) \times \tau$

Microwave

Antenna

Active mode DPR 2 bands: Ka and Ku

Passive mode GMI 13 bands: from 10.65 to 183 GHz

II. DATASETS

- > GPM -> Precipitation Measurement
 - σ^0 and e -> good source
 - $\circ~$ Feb 2014 NASA & JAXA
 - \circ A non-Sun-synchronous orbit
 - $\circ \quad 65^{\prime}S-65^{\prime}N$
- 1 year dataset (2015) NASA
 - \circ high volume data: 62 Go/month (uncompressed)

5

 \circ => optimize Matlab code

Pre-processing data

- Grid: $0:25^{\circ} \times 0:25^{\circ}$
- $\circ~$ Average: every 3 hours over 1 month & 3 months

- 1. The active mode
- 2. The passive mode
- 3. Vegetation

III.1. The active mode

- Snow-cover in January
- $\circ~$ Small angle: σ^{0} # vegetation
- $\circ~$ Large angle: $\sigma^0 \ll$ at soil interface
- $\circ~$ A good indicator for surface roughness

III.3. Vegetation

International Geosphere-Biosphere Programme (IGBP)

- 1. Evergreen broadleaf forests
- 2. Mixed forests
- 3. Woody Savannas (Lat < 50°)
- 4. Grasslands
- 5. Croplands
- 6. Barren or sparsely vegetated areas

IV

IV. ANALYSIS OF THE DIURNAL CYCLE

- 1. Analysis of the diurnal cycle of the backscattering coefficient (σ^0)
- 2. Analysis of the diurnal cycle of the emissivity (e)
- 3. Comparison of diurnal cycle backscattering coefficient and emissivity

III.1. Analysis of the diurnal cycle of the backscattering coefficient

III.1. Analysis of the <u>diurnal cycle</u> of the backscattering coefficient

Evergreen broadleaf forests:

- maximum morning ; minimum evening
- $\circ \sigma^{0}(Borneo) \sigma^{0}(Amazon) = 0.5 dB$
- > Borneo contains other type of surfaces

Barren or sparsely vegetated areas:

- \circ 2 dB # for 2° increase of θ_{Inc}
- ✓ [14] Satake et al., Tropical Rainfall Measurement Mission PR
- ✓ [16] *Frolking et al.*, Sea Winds scatterometer, 0.5 1.0 dB difference, over the Amazon

III.2. Analysis of the diurnal cycle of the emissivity

Test size: 5° Long. by 2° Lat

III.2. Analysis of the diurnal cycle of the emissivity

Evergreen broadleaf forests:

- same tendency for diff frequency , V-H
- \circ diurnal difference ~ 0.01
- maximum mid-day;
 low morning
- dry > wet (Amazon)
- ✓ [24] Norouzi et al.,
 AMSR-E: ~ 0.01
 - [25] Li & Min, AMRS-E & MODIS :dry>wet
- V-H difference:Amazon > Congo

III.2. Analysis of the diurnal cycle of the emissivity

> Croplands:

- o large diurnal difference
- 18.7 GHz : 0.03 in [C1] ;
 0.02 in [C2].
- o diff type of cropland,diff diurnal response

3. Comparison of diurnal cycle backscattering coefficient and emissivity

- **First time** study both active & passive
 - Comparison: Backscattering: Ku band (16°-18°) - 13.6 GHz Emissivity: 10.65 GHz

3. Comparison of diurnal cycle backscattering coefficient and emissivity

V. CONCLUSIONS

- ✓ Vegetation dependence
- ✓ Comparison –active vs passive signals –**first time**
- \checkmark Check the consistency with other studies -> diurnal , not noise, instruments
- Reasons: change of vegetation (types, water content/stress), moisture, surface temperature

PERSEPECTIVES: understand the link btw e & σ^0 , the vegetation responses

- Extend the datasets inter-annual cycle
- > Other datasets (NDVI, Fluorescence (GOME), etc.)

