Star Formation Conditions In the Milky Way's Galactic Central Molecular Zone

Kunihiko Tanaka⁽¹⁾, Makoto Nagai⁽²⁾, Takahiro lino⁽³⁾, Kazuhisa Kamegai⁽²⁾, & Takeshi Sakai⁽⁴⁾

(1) Keio University (2) National Astronomical Observatory Japan(3) Tokyo University of Agriculture & Technology (4) University of Electro-communication

Inefficient SF in GC

- Star Formation *Efficiency* is 1–2 orders below the K-S Law for dense gas (e.g. Kauffmann+17)
- GC is a hostile environment for SF
 & good sample for finding parameters of SF
 - Turbulence

SIK

- Magnetic Field
- Cosmic-Ray (e.g. Kruijssen+14)

• Gas Volume density
$$n_{H2}$$

- SFR = ε_{ff} • M_{gas} • t_{ff}^{-1}
function of density? function of density

CIII

//Igas (/1H2>

Density Measurement is Difficult

- Physical Condition Probes
 - gas surface density $N_{\rm H2}$: submm-FIR dust- gas kinetic temperature $T_{\rm kin}$: ammonia, H2CO- gas volume density $n_{\rm H2}$: ???
- We have to Solve excitation equation including full parameter set
 - $(N_{\rm H2}, T_{\rm kin}, n_{\rm H2}, \text{ filling factor, molecular abundances})$ x num. of voxel

Multi-line Analysis

- ASTE10-m & NRO45-m (*KT+ in prep.*)
 - HCN *J*=4-3
 - H¹³CN *J*=1-0 +
- Mopra 3-mm Survey (Jones+ 2012)
 HCN J=1-0
 - HCO+ J=1-0 +
- Apex Survey (Ginsburg+16)
 p-H₂CO J=3₀₃-2₀₂, J=3₂₁-2₂₀ +
- NRO45m Survey (*Tsuboi+15*)
 H¹³CO⁺ J=1-0 +

Multi-line Analysis

- ASTE10-m & NRO45-m (*KT+ in prep.*)
 - HCN *J*=4-3
 - H¹³CN J=1-0 +
- Mopra 3-mm Survey (Jones+ 2012)
 HCN J=1-0
 - HCO+ J=1-0 +
- Apex Survey (Ginsburg+16)
 p-H₂CO J=3₀₃-2₀₂, J=3₂₁-2₂₀ +
- NRO45m Survey (Tsuboi+15)
 - H¹³CO⁺ J=1-0 +

Maximum Likelihood(ML) Analysis

Likelihood Function :

$$P(\boldsymbol{x}|\boldsymbol{p}) \propto \prod_{i} \frac{1}{\delta_{i}} \exp\left[-\frac{1}{2}\left(\frac{x_{i}-F(\boldsymbol{p}_{i})}{\delta_{i}}\right)^{2}\right]$$

 Severely affected by systematic errors due to calibration errors, spectral baseline noises, breakdown of one-zone LVG approximation, …

···But Systematic Errors cannot be included in ML analysis

factor for systematic errors 💊

$$P(\boldsymbol{x}|\boldsymbol{p}) \propto \prod_{i} \frac{1}{\delta_{i}} \exp\left[-\frac{1}{2}\left(\frac{x_{i}-\epsilon_{i}}{\delta_{i}}F(\boldsymbol{p}_{i})\right)^{2}\right]$$

- Additional parammeter representing systematic errors are necessary
- Cannot be solved with ML method : d.o.f < 0

Hierarchical Bayesian Analysis Kelly+12

- Uses statistical properties of Parameters for inference
 - Variance-covariance of p : Σ
 - Voxel-mean of p : p_0
 - Std of systematic errors : σ

Posterior Probability

 $P(\boldsymbol{p}, \boldsymbol{\epsilon}, \boldsymbol{\theta} | \boldsymbol{I}) \propto P(\boldsymbol{I} | \boldsymbol{p}, \boldsymbol{\epsilon}) \cdot P(\boldsymbol{p}, \boldsymbol{\epsilon} | \boldsymbol{\theta}) \cdot P(\boldsymbol{\theta}) =$

$$\prod_{i,j}rac{1}{\delta_{i,j}}\exp\left[-rac{1}{2}\left(rac{oldsymbol{x}_{i,j}-\epsilon_i\cdot F\left(oldsymbol{p}_i
ight)_j}{\delta_{i,j}}
ight)^2
ight]$$

Joint (simultaneous) probability of

- *p* : physical condition
- e : errors
- θ : statistical properties of p and e

```
on condition that / (line intensities) are known
```

$$egin{aligned} &\cdot \prod_{i,j} rac{1}{\sigma_j \cdot \epsilon_{i,j}} \cdot \exp\left[-rac{1}{2}\left(rac{\ln \epsilon_{i,j}}{\sigma_j}
ight)^2
ight] \ &\cdot |oldsymbol{\Sigma}|^{-rac{N}{2}} \cdot \prod_i^N \left[1+rac{1}{
u} \left(oldsymbol{p}_i - oldsymbol{p}_0
ight)^{\mathrm{T}} \cdot oldsymbol{\Sigma}^{-1} \cdot \left(oldsymbol{p}_i - oldsymbol{p}_0
ight)
ight]^{-rac{
u+N_p}{2}} \end{aligned}$$

$$\begin{pmatrix} |R|^{-(N_p+1)} \cdot \prod_{k}^{N_p} \left[S_k^{-N_p} \left(R^{-1}_{k,k} \right)^{-\frac{N}{2}} \right] \\ (for \ symmetric \ positive \ definite \ \boldsymbol{\Sigma}) \\ 0 \\ (otherwise) \end{pmatrix}$$

Posterior Probability

Marginal Posterior Probability

Eliminate `nuisance parameters' (e, θ) by performing integration

$$P(\boldsymbol{p}|\boldsymbol{I}) = \int P(\boldsymbol{p}, \boldsymbol{\epsilon}, \boldsymbol{\theta}|\boldsymbol{I}) \cdot d\boldsymbol{\epsilon} \cdot d\boldsymbol{\theta}$$

$$\propto \int P(\boldsymbol{I}|\boldsymbol{p}, \boldsymbol{\epsilon}) \cdot P(\boldsymbol{p}, \boldsymbol{\epsilon}|\boldsymbol{\theta}) \cdot P(\boldsymbol{\theta}) \cdot d\boldsymbol{\epsilon} \cdot d\boldsymbol{\theta}$$

Integration is done using Marcov-Chain Monte Carlo (MCMC) method

ML Analysis

 Severely affected by systematic errors due to calibration errors, spectral baseline noises, one-zone LVG approximation, …

HB Analysis (PDF median map)

Artifacts are supressed

HB Analysis (PDF median map)

Molecular Abundance Map

Widespread Shock Chemistry

Physical Condition & Star Formation

- Identified 206 clumps from the HCN4-3 map
- Investigated correlation among r, dv, M, $n_{\rm H}$, and $T_{\rm kin}$

Principal Component & Linear Discrimination Analysis

• Correlation 1: (PC5 = 0)
$$r \cdot \Delta v^{1.15} \cdot M^{-0.71} \cdot n_{\text{H}_2}^{0.42} =$$

$$^{71} \cdot n_{\rm H_2}^{0.42} = Const.$$

Virial parameter $\alpha = r dv^2 M^{-1}$ or (Surface density per unit velocity)⁻¹

PCA & LDA results

Correlation 1:
$$(PC5 = 0)$$

 $r \cdot \Delta v^{1.15} \cdot M^{-0.71} \cdot n_{H_2}^{0.42} = Const.$
Correlation 2:
 $r \cdot \Delta v^{2.70} \cdot M^{-1.28} \cdot n_{H_2}^{-1.57} \sim P(SF)^{-1}$

Virial parameter $\alpha = r dv^2 M^{-1}$ or (Surface density per unit velocity)⁻¹

• Qualitatively consistent with turbulent regulated SF

e.g. Krumoholz+05

Krumholz+05, *Federrath*+12

$$\frac{n_{\rm th}}{n_0} \sim \alpha_{\rm vir} \cdot \mathcal{M}^2 \cdot \left(1 + \beta^{-1}\right)^{-1}$$

- : threshold density $n_{\rm th}$
- : mean density $\sim 10^4 \text{ cm}^{-3}$ n_0
- : Mach Number ~ 20 Μ
- β
- : plasma beta ~ 0.1 (*B*=0.1 mG)
- : virial parameter ~ 25 $lpha_{
 m vir}$

•
$$n_{\rm th} = 10^7 \, {\rm cm}^{-3}$$

 $(10^4 \text{ cm}^{-3} \text{ for disk})$

critical overdensity factor $\sim 10^3$ (10^2 for disk)

Reason of the low SFE in GC: GC clouds are not dense enough to form stars against strong turbulent pressure support

Potential Application of this Analysis

- Higher resolution analysis using ALMA data
 - density measurement of < 0.1 pc scale resolution data
 - Volume density PDF, detection of high density cores
- Application for extragalactic SF region

Summary

- Volume density distribution in 3-D (2-D in space + 1-D in velocity) space is calculated for the MW's central molecular zone
- New method using Hierarchical Bayesian Analysis is adopted for volume density measurement
- Effects of shocks on the thermal valance and molecular chemistry are confirmed
- Clumps with low virial parameter / high volume density tend to have higher probability of having SF signatures
- GC clumps are not dense enough to form stars against strong turbulent pressure support