Unstuck in the middle with you: intermediate-mass stars are the missing link in star formation

Megan Reiter

Dean B. McLaughlin Fellow University of Michigan

with Nuria Calvet, Thanawuth Thanathibodee, Stefan Kraus, P.Wilson Cauley, John Monnier, Adam Rubinstein, Alicia Aarnio, & Tim Harries

Image courtesy: Baytop Observatory

Herbig Ae/Be stars (~2-10 M_{sun}) sample conditions intermediate between low- and high-mass stars.

Herbig Ae/Be stars (~2-10 M_{sun}) sample conditions intermediate between low- and high-mass stars.

Hogerheijde 1998, after Shu et al. 1987 Herbig Ae/Be stars (~2-10 M_{sun}) sample conditions intermediate between low- and high-mass stars.

Transition?

Disk geometry – Vink et al. 2002, 2005 Magnetic fields – Wade et al. 2007, Alecian et al. 2013 Accretion physics - Donehew & Brittain 2011, Cauley & Johns-Krull 2014 Necessary elements of magnetospheric accretion may not exist in higher-mass stars.

Hartmann, Herczeg, & Calvet (2016)

Necessary elements of magnetospheric accretion may not exist in higher-mass stars.

Few Herbig Ae/Be stars have detectable magnetic fields.

Alecian et al. (2013b)

Magnetic Herbig Ae/Be stars show a mix of line profile morphologies.

Magnetic Herbig Ae/Bes are slow rotators – do line profiles provide indirect evidence of B-field?

Alecian et al. (2013a)

Slow rotators **not** more likely to show redshifted absorption...

Reiter et al., ApJ, submitted

Slow rotators **not** more likely to show redshifted absorption... even when corrected for inclination.

Reiter et al., ApJ, submitted

Line profile morphology does not correlate with any stellar parameter.

For magnetospheric accretion, redshifted absorption is only visible from some inclinations.

No clear dependence of line profile morphology on inclination (although small numbers).

Reiter et al., ApJ, submitted

Magnetic fields preferentially detected in sources seen closer to pole-on.

Reiter et al., ApJ, submitted

Magnetic fields only detected from some viewing angles.

dominant dipole

higher-order field

Circular polarization \rightarrow indicates ordered field

Zeeman broadening → field strength

BP Tau from Gregory et al. (2008)

Alecian et al. (2013b)

Magnetic fields only detected from some viewing angles.

Alecian et al. (2013b)

Magnetic field strength and topology evolve as star moves in HR diagram.

Models needed to test magnetospheric accretion via weaker, higher-order field components.

1.4 V1578 Cyg 1.4 BD+41 373 B5 A1 1.2 1.2 1 (0.8 0.8 0 O 0.6 -200 200 400 -400 -200 200 -400 0 0 400 MWC 480 1.6 Α4 1.4 HD 34282 A3 1.4 1.2 1.2 1.0 0.8 0.8 0.6 PC IPC 0.4 0.6 -200 -400 -200 -400 0 200 400 0 200 400 HD 36917 B9 HD 37258 A1 1.2 1.2 1.1 1.0 100.9 0.8 0.8 IPC О 07 -200 200 400 -200 200 -400 0 -400 0 400 1.4 HD 50083 1.2 HD 38238 A6 B4 1.1 1.2 1.0 0.9 0.8 O 08 IPC -200 0 200 400 -200 200 400 -400 -400 0

BP Tau from Gregory et al. (2008) cartoon from Hartmann et al. (2016)

Reiter et al., ApJ, submitted

Line profiles unaffected by the magnetic field.

- Line profiles not different between magnetic and nonmagnetic Herbig Ae/Be stars.
- No correlation between stellar parameters and line profiles.
- Possible selection bias magnetic fields only detected in sources view pole-on?

