Signature of Past Star Forming Activity in the Central Molecular Zone of Our Galaxy

Tomoharu OKA (Keio Univ.)

Central Molecular Zone

Inner 200 pc of the Milky Way Galaxy
Dense (n_{H2}>10⁴ cm⁻³) and warm (T_k>30 K) molecular gas (M_{gas}=5x10⁷ M_{sun})
Highly turbulent (ΔV>15 km s⁻¹)

suppresses star formation
favors massve stars

100 pc

Sgr A*

Young Massive Clusters

Arches Cluster $M_{ini} \sim 2 \times 10^4 M_{sun}$ $M_{ini} \sim 2 \times 10^4 M_{sun}$

IMF: top-heavy or normal

Figer+ (1999)

Star formation is currently taking place

Diffuse X-ray Emission

Fe 6.4 keV line
Reflection nebula?
Fe 6.7 keV line *kT* = 6.6 keV *E*th = 3x10⁵³ erg *t*eq ~ 5–10 Myr

© Koyama & Nobukawa

Nobukawa+ (2008)

Past star forming activity

Fermi Bubbles

•γ-ray (1–20 GeV) X-ray / radio •*kT* ~ 2 keV • $E_{\rm kin} = 10^{54-55} \, {\rm erg}$ • $t_{exp} \sim 10 \text{ Myr}$

Su + (2010)

Fermi data reveal giant gamma-ray bubbles

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al 10^{3–4} SNe X-ray emissions. 50.000 light-years Milky Way Sun Starburst/quasar activity

Expanding Shells

Radio Arc region *Oka et al. 2001, PASJ, 53, 779*Sgr B1 region *Tanaka et al. 2009, PASJ, 61, 461*Accelerated by SNe and SWs

Star formation can be traced by gas kinematics

Topics

Detections of
Two Molecular Bubbles
Intermediate-mass Black Hole Candidate
in the Central Molecular Zone

CO Imagings of the CMZ

NRO 45 m survey
CO J=1-0 (115 GHz)
Oka et al. 1998, ApJS, 118, 455
ASTE survey
CO J=3-2 (346 GHz)
Oka et al. 2012, ApJS, 201, 14

 Red:
 CO J=1-0

 Green:
 CO J=3-2

 Blue:
 $R_{3-2/1-0} \ge 1.5$

High R_{3-2/1-0} Regions

Oka et al. 2012, ApJS, 201, 14

• $R_{3-2/1-0} \ge 1.5$: dense and warm gas

- $T_k \ge 50 \text{ K}, n(H_2) \ge 10^4 \text{ cm}^{-3}$
- $[N_{CO}/dV = 10^{17} \text{ cm}^{-2} (\text{km s}^{-1})^{-1}]$
- L=+1.3°, L=0.0°, L=-0.4°, L=-1.2° regions

Extremely broad velocity width

High R_{3-2/1-0} Regions

L=+1.3°, L=0.0°, L=-0.4°, L=-1.2° regions Extremely broad velocity width (ΔV>100 km s⁻¹) What are these?

2.0 1.0 0.0 -1.0 Galactic Longitude [degrees]

3.0

$L=+1.3^{\circ}$ Region

•HVCCCO 1.27+0.01 Oka et al. 2001

- Two clear expanding shells
- $t_{exp} = 6 \times 10^4 \text{ yr}$
- $E_{kin} = 2 \times 10^{52} \text{ erg}$
- Nine Expanding shells Tanaka et al. 2007
 Shocked gas at high-vel. ends

Molecular Bubble (1)

L=+1.3° Region

• HVCC CO 1.27+0.01 Oka et al. 2001

- $t_{exp} = 6 \times 10^4 \text{ yr}$
- $E_{kin} = 2 \times 10^{52} \text{ erg}$

Energetics

- $N_{\rm SN} \sim 20 \ \eta^{-1} \ (\eta \sim 0.3; Crocker et al. 2011)$
- $SNR \sim 10^{-3.5} \eta^{-1} \text{ yr}^{-1}$
- Salpeter IMF (a=2.35)

 $M_{\rm cl} \sim 10^{6.1} \, \eta^{-1} \, M_{\rm sun}$

Unusually Massive Cluster (1)

L=-1.2° Region

• HVCC CO-1.21-0.12 *Oka et al. 2012*

- Clear expanding shell
- $t_{exp} \sim 10^5 \text{ yr}$
- $E_{\rm kin} \sim 10^{52} \, {\rm erg}$

• Five Expanding shells Tsujimoto et al. 2017

Aligned to the Galactic plane
Shocked gas at high-vel. end

Molecular Bubble (2)

L=-1.2° Region

• HVCC CO-1.21-0.12 *Oka et al. 2012*

- $t_{exp} \sim 10^5 \text{ yr}$
- $E_{kin} \sim 10^{52} \text{ erg}$

• Energetics *Tsujimoto et al. 2017*

- $N_{SN} \sim 10 \ \eta^{-1} \ (\eta \sim 0.3; Crocker et al. 2011)$
- $SNR \sim 10^{-4} \eta^{-1} \text{ yr}^{-1}$
- Salpeter IMF (a=2.35)

 $M_{\rm cl} \sim 10^{5.6} \, \eta^{-1} \, M_{\rm sun}$

Unusually Massive Cluster (2)

Galactic Latitude [deg]

Galactic Longitude [deg]

L=-1.2° Region

Expanding shells *Tsujimoto et al.* 2017 *t*_{exp} well correlates with *l*Gas orbits near ILR *Binney et al.* 1991
Cluster: innermost *x*₁ orbit
Gas: infalling from an orbit intersection

Nature of the Clusters

• No RC/IR counterpart

age = 10–30 Myr

- Expreterd asmin(a=1.7)
 - $M_{c+}(1+3.3) \approx 1070\% n h L_s M_{sun}$
 - Mat (1-2.2~)10705 19 17 Ls Masun

Observed IR luminosity
 *L*_{IR}(+1.3°)~10^{6.2} *L*_{sun}
 *L*_{IR}(-1.2°)~10^{5.8} *L*_{sun}

Expected Luminosity for consistent!
L(+1.3°)~10^{8.2} η⁻¹ L_{sun}
L(-1.2°)~10^{7.7} η⁻¹ L_{sun}
Top-heavy IMF?

$L=-0.4^{\circ}$ Region

• HVCC CO-0.40-0.22

- Compact appearance (d<3 pc)
- Extremely-broad ΔV (>80 km s⁻¹)
- No counterpart

What is this?

Kinematics

- Size ~ 2 pc
- Velocity gradient shift
- Eastern hump

ALMA Band 6 Observations

CO J=2-1 : 230.538001 GHz
HCN J=3-2 : 265.886432 GHz
12m array + 7m array
HPBW = 1.7"x1.0"@231 GHz = 1.3"x0.5"@266 GHz

•進捗

- Nov. 2012: Approved Cycle 1 obs.
- Oct. 2013: Transfer to Cycle 2
- Dec. 2014: 7m data delivery
- Apr. 2015: 12m data delivery

Radio Continuum Images

Point-like source: CO-0.40-0.22*
Size < HPBW₂₆₆ (=0.06x0.02 pc²)

Point-like Continuum Source

• Fluxes

• $F_{231G} = 8.2 \pm 0.4 \text{ mJy}$ • $F_{266G} = 9.7 \pm 0.4 \text{ mJy} (T_{b} \sim 0.33 \text{ K})$ • $\alpha = 1.18 \pm 0.65$ (~ 0.3 @Sgr A*) • $F_{\rm X} < 0.95 \, \rm nJy$ Ultra-compact HII region? • EM >10¹¹ cm⁻⁶ pc (<10⁸ @UCHII) Protoplanetary disk? • T_d ~ 9 K (several 100 @PPD) Submillimeter Galaxy? • $P_{\rm ch} < 0.028 \%$

Intermediate-Mass Black Hole ?

_atitude [°]

ctic

đ

Gravitational Kick Model Revisited

Oka et al. 2017, NatAs

• $10^5 M_{sun}$ @CO-0.40-0.22* • $\phi = 45^{\circ}$, P.A.=41.6°, *i*=70°

reproduces very well

Formation/Evolution of SMBH

Ebisuzaki et al. 2001

Starburst

- Dense stellar clusters
- Runaway stellar coalescence

Intermediate-mass BHs

Merging at GC

• Supermassive BH

The open cluster Westerlund

爆発的星形成

Hubble

Summary

We detected:

Two molecular bubbles
 embedded massive clusters

Tanaka et al. 2007, PASJ, 59, 323 Tsujimoto et al. 2017, ApJL submitted

Oka et al. 2001, PASJ, 53,787

A Intermediate-mass black hole candidate

► M=10⁵ M_{sun}

top-heavy IMF?

Oka et al. 2016, ApJ, 816, L7 Oka et al. 2017, NatAs in press

in the central molecular zone of our Galaxy.

tomo@phys.keio.ac.jp

ご静聴どうも有り難うございました。 Thank you for listening.