Deviation from Larson and Schmidt-Kennicutt relations in Galactic Molecular Cloud Complex

Quang Nguyen Luong Korea Astronomy and Space Science Institute (KASI)

THE SCALING RELATIONS AND STAR FORMATION LAWS OF MINI-STARBURST COMPLEXES

Quang Nguyễn-Lu'o'ng^{1,2,3,13}, Hans V. V. Nguyễn⁴, Fredérique Motte⁵, Nicola Schneider⁶, Michiko Fujii^{7,8}, Fabien Louvet⁹, Tracey Hill¹⁰, Patricio Sanhueza¹, James O. Chibueze¹¹, and Pierre Didelon¹²

> Nguyen Luong et al. 2016, arXiv:1605.01104 http://adsabs.harvard.edu/abs/2016ApJ...833...23N

Motivation

Deviation from Schmidt-Kennicutt relation

Questions:

Schmidt-Kennicutt relation in molecular cloud complex (MCC,50-100 pc) Do Larson relations also deviate from the original universal relations?

Molecular cloud complex

W43: (NLQ11, Carlhoff et al. 13)

(Galvan-Madrid et al. 13)

RCW106: (Nguyen et al. 14, Lowe et al. 14)

Sou

**co (2-1) c¹⁸0 (2-1) z 8

Cygnus X: (Schneider et al. 06, Motte et al.

Properties: Mass ~10⁶ Msun Velocity dispersion > 8 km/s

80 Velocity (km/s)

W43: (NLQ11, Carlhoff et al. 13)

(Wei,Keto,Ho12)

MCC sample in the Milky Way

Nguyen-Luong et al 2016

Patrick Thaddeus (1932-2017), Dame et al. 2001

Data from CfA 1.2m telescopes CO survey: Friend-of-friend algorithm Duchamp source extraction Selection by eyes $M_{LTE} > 10^{6}$ Msun

MCC sample in the Milky Way

Complex	1	ь	VLSR	σ	đ	A ×10 ⁻²	R	Lco × 10 ³	M ₂₁₀	$\Sigma_{\rm flat}$	$S_{21}^{\rm int}$ en	SFR	Σ_{SPR}	$\alpha_{\rm str}$
	ෆ	Ċ	(km s ⁻¹)	(km s ⁻¹)	(kpc)	(kpc ⁸)	(pc)	(L ₂)	(M ₀)	(M _☉ pc ⁻³)	(Jy)	(M ₀ yr ⁻¹)	(M _☉ yr ⁻¹ kpc ⁻²)	
G111	111.0	-1.0	-49	7.9	3.34	5.7	134	7.2	2.2	38.7	1860	0.014	0.25	4.4
G80-CygnusX	80.0	0.0	2	6.6	1.5	3.7	108	40.7	2.2	59.9	45759	0.062	1.68	2.5
G52	52.1	-0.4	55	6.9	6.9	2.0	79	1.8	1.9	95.6	2818	0.0725	3.6	2.3
G49-W51	49.5	-0.5	\$7	9.8	5.41	1.8	76	3.6	2.5	139.9	10237	0.184	10.2 2	3.4
G44.4	44.4	-0.2	61	7.2	9.3	1.8	75	2.7	1.5	82.7	5272	0.070	3.89	3.1
G42-W49	42.0	-0.5	63	9.5	11.1	2.8	93	1.5	4.9	179.2	6069	0.51	17.86	2.0
G40	40.0	0.0	32	6.1	2.2	3.4	104	13.0	1.8	52.1	7783	0.026	0.77	2.5
G39	39.0	-0.4	65	27.3	12.1	13.1	204	33.1	15.7	120.2	6447	0.079	0.60	11.3
G35-W48	35.0	-1.0	46	14.0	3.27	3.3	101	15.3	4.5	138.0	8379	0.075	2.27	5.2
G30-W43	30.5	-0.5	93	16.3	5.5	2.8	94	11.1	9.3	329.5	15282	0.320	11.40	3.1
G25.9	25.9	-0.5	100	10.0	5.4	2.5	\$8	4.5	3.7	148.5	12688	0.255	10.24	2.8
625.5 + 52	25.5	-0.2	52	11.1	3.4	1.1	58	5.2	1.7	154.0	15012	0.120	10.91	5.0
km s-1														
G25.5 + 102 km s ⁻³	25.5	-0.1	102	11.5	5.5	2.7	93	5.6	4.6	169.8	15164	0.317	11.75	3.2
G23.7 + 60	23.7	-0.5	60	9.9	6.21	2.0	\$0	4.4	4.7	230.9	15342	0.407	20.40	2.0
G24 + 100 km s ⁻¹	23.5	-0.2	93	21.1	5.9	3.2	101	13.9	13.2	411.9	17171	0.413	12.91	4.0
G21	21.0	-07	51	13.2	36	1.2	61	7.3	2.6	216.8	11690	0.1048	6.10	4.8
G20.9	20.9	0.0	32	14.7	2.6	0.6	44	5.1	1.0	151.3	12909	0.060	10.0.0	11.8
G18.2	18.2	-03	47	10.3	3.6	1.2	61	7.3	2.6	217.7	5044	0.045	3.75	3.0
G16.8.	16.8	0.4	23	5.9	1.98	0.5	39	47	0.7	140.7	8560	0.031	6.20	23
M16/M17					100								0.00	414
G13.5-W33	13.5	-0.5	24	35.1	2.92	1.2	61	20.8	47	393.2	480	0.00175	0.149	10.8
G10-W31	97	-05	22	157	4.95	23	85	14.0	95	416.2			10	2.6
G8 2	\$2	0.2	17	8.4	29	0.8	49	63	1.5	188.4	- 2 -	12	10	28
G7.5	75	-10	17	87	3.0	0.8	51	79	2.0	234.4	8		10	23
GLS	57	-0.5	13	86	31	28	01	19.0	50	179.7			0.9	1.6
GO-CMZ	0.5	0.0	-6	23.1	7.9	\$1.6	405	74.8	128.5	249 1	- Q		0.9	20
G355	355.0	0.0	95	20.0	61	0.8	50	7.7	2.8	344.2	87.4	0.0212	2.50	8.4
G344	344 3	-03	-71	8.1	4.8	26	91	2.3	21	80.4	203	0.0117	0.423	33
G343	343.0	0.0	-28	80	27	26	91	175	3.4	129.7	426	0.00214	0.022	2.0
G342-	347 5	0.0	-127	81	810	3.5	105	22	25	23.8	245	0.007	0.17	32
127 km s ⁻¹					0.50		105	200			1000	0.007	0.41	
G342-	342.5	0.0	-79	7.8	4.74	2.3	85	3.4	2,4	102.8	245	0.004	0.173	2.5
G340	340.3	-05	-37	14.1	3.41	0.8	51	10.4	26	309.4	684	0.00426	0.50	4.6
(3337	337.0	-05	-115	89	7.85	3.8	109	23	2.9	76.5	2385	0.074	1.95	3.5
G334	334.0	0.0	-87	9.4	4.9	22	84	4.1	2.7	122.4	2312	0.0384	1.77	32
G330- RCW106	333.1	-0.4	-46	13.9	3.5	0.9	53	11.7	3.2	348.4	3111	0.0278	3.22	3.8
G331- 90 km s ⁻¹	331.6	-0.1	-93	10.4	7.44	2.5	88	5.5	4.0	162.0	1863	0.0348	1.40	2.8
G329- 75 km s ⁻¹	328.5	0.0	-75	30.2	4.4	4.1	114	28.0	15.1	369.5	714	0.0095	0.244	8.0
G329- 25 km s ⁻¹	329.0	0.0	-45	7.7	3.0	3.3	103	14.3	3.5	104.6	917	0.00571	0.15	2.0
G327	327.0	0.0	-45	78	2.9	1.8	75	11.3	274	149.4	2563	0.0149	0.83	2.0
G320	320.8	-03	-62	123	4.0	1.5	69	4.2	1.9	124.1	811	0.00897	0.67	6.5
G318	318.0	-03	-44	8.1	30	0.8	51	55	14	163.6	833	0.00518	0.625	20
G316.5	316.5	-0.3	-45	91	33	1.0	57	61	1.9	180.0	1224	0.0092	0.1	3.0
G314	314 5	-03	_49	89	36	12	61	7.4	26	219.3	280	0.0025	0.25	21
G311	311.8	-02	-49	89	40	2.4	86	11.7	51	214.4	1099	0.0121	0.5	1.6
G309	309.5	-0.4	-44	11.2	3.8	1.8	75	9.0	37	205.9	528	0.0053	0.28	30

Table 1 Cloud and SFR Characteristics of the Massive MCCs in the Milky Way

Nguyen-Luong et al 2016

MCC's Mass and Star Formation Rate measurement

Gas cloud properties from CfA CO survey (Dame et al. 2001):

Mass Gas surface density Velocity dispersion

SFR from 21 cm radio continuum form VGPS, CGPS and SGPS:

VLA Galactic Plane Survey (VGPS, Stil et al. 2006): 18°–67° Canadian Galactic Plane Survey (CGPS, Taylor et al. 2003): 63°–175° Southern Galactic Plane Survey (SGPS, Haverkorn et al. 2006):253°–358°

Complement data

Cores/ clumps/ GMCs: 0.01-50 pc

Maruta et al. (2010), Onishi et al. (2002), Shimajiri et al. (2015),

Heyer et al. (2009), Roman-Duval et al. (2010), Evans et al.

(2014), Heiderman et al. (2010), Lada et al. (2010), Evans et al. (2014)

MCCs: 50-100 pc

García et al. (2014), Murray (2011), Donovan-Meyer et al.

(2013), Rosolowsky (2007), Miura et al. (2012, 2014), Wei et al. (2012), García et al. (2014), Bolatto et al. (2008), Murray (2011) Galaxies:

Leroy et al. (2013), Tacconi et al. (2013), Genzel et al. (2010)

8 order of magnitudes in Size13 order of magnitudes in MassMass are measured by CO but SFR tracers are differents

Virial parameter and sigma-radius relation

SFR density – Gas density relation

MCC:

- offset from the global Schmidt-Kennicut law
- Different mode of SF: ministarburst mode
- SK diagram is divided into four quadrants

(NLQ+16)

SFR – Total Gas Mass Relation

MCC:

- Fill the Lada 2010 plot
- Connect local to global SFR-Mass relation
- Probably can also divided into difrerent SF tracks

(Howard, Pudritz, Harris16,17)

SFR –velocity dispersion Relation

(*Krumholz*+16)

- If all other scaling laws hold, slope = 3-8

Our slope (2.6) is shallower than prediction and slower than Krumholz et al. (2016): turbulence is driven by star formation feedback (steeper slope~2) and/or that it is produced by gravitational instability (shallower slope)
Dynamics are different in different population

Massive star forming complex (Ministarburst)

Mass ~ 106 Msun Radius ~ 30-70 pc Large velocity dispersion High fraction of dense gas Multiple gas clouds along the line of sights and on plane Large scale atomic gas flows fuel the central molecular cloud complex Form high mass stars or massive cluster

(*Motte+03,NLQ+11,NLQ+13,Louvet+16,NLQ16*)

CONCLUSION

MCCs are mostly gravitationally unbound, massive, large

Universal KS, Larson relations is not applicable across all scales

Two modes of star formation: massive SF (ministarburst) vs normal cluster SF