

Tomonari Michiyama, (2nd year PhD, NAOJ/SOKENDAI from Japan) D.lono, K.Sliwa, A.Bolatto, and etc

Relation between CO (3–2) and Far Infrared Luminosities for Nearby Merging Galaxies Using ASTE and AKARI

Tomonari Michiyama, (2nd year PhD, NAOJ/SOKENDAI from Japan) D.lono, K.Sliwa, A.Bolatto, and etc

Star Formation in Different Environments

Tomonari Michiyama, (PhD, NAOJ/SOKENDAI from Japan)

Star Formation in Different Environments
→ star formation inside the galactic scale outflow
→ dense gas outflow

Tomonari Michiyama, (PhD, NAOJ/SOKENDAI from Japan)

(Phil Hopkins' HP)

Galaxy Merger

1. starburst and/or AGN is triggered due to gas concentration (gas inflow)

Molecular Outflow during Galaxy Merger

2. starburst and/or AGN is quenched by expelling the gas (molecular outflow)

Feedback Mechanism

What is feedback ? (in dictionary): the process in which part of the output of a system is returned to its input in order to regulate its further output

merger trigger starburst \downarrow starburst trigger molecular outflow \downarrow molecular outflow quench starburst

Feedback Mechanism

```
What is feedback ? (in dictionary):
the process in which part of the output of a system is returned
to its input in order to regulate its further output
```

```
merger trigger starburst

\downarrow

starburst trigger molecular outflow

\downarrow

molecular outflow quench starburst

\downarrow
```

Feedback Mechanism

```
What is feedback ? (in dictionary):
the process in which part of the output of a system is returned
to its input in order to regulate its further output
```


General idea

Feedback Mechanism

Feedback Mechanism

Motivation: We want to show the star formation in the outflow

Why is star formation in outflow important?

- 1. contribute to the morphological evolution (Gaibler+12, Dugan+14)
- high velocity stars which can escape from the galaxy (material of intergalactic medium)
- 3. contribute to the star formation in the high-z universe (Silk+13)

Recent Studies

1. Maiolino et al. (2017), X-shooter/VLT observation \rightarrow detect broad lines by optical spectroscopy

Recent Studies

Maiolino et al. (2017), X-shooter/VLT observation \rightarrow BPT diagram shows star formation in the outflow

My Study

Key Question: Is outflowing molecular gas enough dense? hot?

[Problem]

- 1. The outflows are detected mainly in bright CO lines.
- \rightarrow detect outflow in multi-molecules (physical properties)
- 2. The outflow is discussed only in spectrum
- \rightarrow We have to resolve outflow and other components

NGC 3256

North Nucleus starburst

NGC 3256

(Lehmer+15)

South Nucleus AGN galaxy

(Emonts+14)

NGC 3256

CO outflow have already detected in ALMA cycle0 (Sakamoto+14)

NGC 3256

CO outflows have already detected in ALMA cycle3 (Sakamoto+14)

4. Observation

ALMA

HCN(1-0), HCO⁺(1-0) → dense gas tracer (~ 10^5 cm⁻³) → ALMA Cycle3 line survey (Michiyama et al., ID=2015.1.00993.S) r.m.s = 0.2 mJy → two hours

CO(2-1)

 \rightarrow ALMA Cycle3 (Sliwa et al., ID=2015.1.00714.S) r.m.s = 0.3 mJy

CO(1-0), CO(3-2) → ALMA cycle0 (Sakamoto et al., 2014, ID=2011.0.00525.S) r.m.s = 1 mJy for CO(1-0), 3 mJy for CO(3-2)

moment 0

moment 0 broad components 4.5 **HCN(1-0)** 250 110 0.0018 peak flux velocity ine width 200 100 0 12.0 0 0.0016 12. N 10.0 2.5 150 0 0 90 0.0014 North-OF-blue 2 100 80 ☆ 0.0012 -43:54:20.0 15.0 1.5 16.0 16.0 50 0 16. 70 North-Nucleus OF-Red 0.001 60 -50 South-Nucleus -43:54:20.0 0.0008 43:54:20.0 0 0.5 20. ন্দ ন্দ 50 -100 54: South-OF-blue 25.0 0.0006 43. 40 0 0 -150 0.0004 30 -200 30.0 0 0 0.0002 20 -250 24. 52.5 52.0 51.5 51.0 50.5 10:27:50.0 51.6 51.4 51.2 10:27:51.0 51.6 51.4 51.2 10:27:51.0 51.6 51.4 51.2 10:27:51.0 0.04 (Jy kms⁻¹) (kms⁻¹) (Jy kms⁻¹) (kms⁻¹) I I 1.L

!!!!!! Detection of Dense Gas Outflow !!!!!!

broad components moment 0 4.5 **HCN(1-0)** 250 110 0.0018 peak flux velocity ine width 200 12.0 100 12.0 0 0.0016 12. 150 10.0 2.5 0 0 90 0.0014 North-OF-blue 2 100 80 ☆ 0.0012 -43:54:20.0 15.0 1.5 16.0 16.0 50 0 16. 70 North-Nucleus OF-Red 0.001 60 -50 South-Nucleus 0.0008 -43:54:20.0 43:54:20.0 43:54:20.0 0.5 公 公 50 -100 South-OF-blue 25.0 0.0006 40 0 -150 0 0 0.0004 30 -200 30.0 0 0 0002 20 -250 52.5 52.0 51.5 51.0 50.5 10:27:50.0 51.4 51.2 10:27:51.0 51.6 51.6 51.4 51.2 10:27:51.0 51.6 51.4 51.2 10:27:51.0 0.04 (kms⁻¹) (Jy kms⁻¹) (kms⁻¹) (Jy kms 11 Τ.E South-OF-Blue **OF-Red**

broad components moment 0 4.5 • HCO+(1-0) 250 110 4 0.0018 peak flux velocity line width 200 12.0 100 12.0 0 0.0016 -3 12 150 10.0 2.5 90 0.0014 100 2 80 ☆● 0.0012 25.0 -43:54:20.0 15.0 1.5 16.0 16.0 50 0 6. 70 0.001 ☆ 60 -50 0.0008 -43:54:20.0 43:54:20.0 0 0 0.5 20. 50 -100 54 0.0006 -150 0.0004 30 -200 30.0 24.0 0 0 0002 20 -250 24 5 50.5 10:27:50.0 51.6 51.4 51.2 10:27:51.0 52.5 52.0 51.5 51.0 51.4 51.2 10:27:51.0 51.4 51.6 51.6 51.2 10:27:51.0 200 (Jy kms-(kms⁻¹) (kms⁻¹) (Jy kms⁻¹) South-OF-Blue OF-Red

Detection of Dense gas Outflow

Detection of Dense gas Outflow

_

— red (+180 ~ +360 km s- ¹), — blue (-240 ~ -360 km s- ¹)							
CO(1-0)		CO(2-1)			CO(3-2)		
		0				*	
region	integrated	со	СО	СО	HCN	HCO ⁺	
	velocity	J = 1 – 0	J=21	J = 3 – 2	J = 1 - 0	J = 1 – 0	
	${\rm km~s^{-1}}$		$Jy \text{ beam}^{-1} \text{ km s}^{-1}$				
North-OF-Blue	$-240 \sim 360$	0.5 ± 0.1	1.0 ± 0.2	< 0.6	< 0.06	< 0.06	
North-Nucleus	-600~600	36 ± 7	139 ± 28	280 ± 56	2.56 ± 0.51	2.75 ± 0.55	
• OF-Red	$+180 \sim +360$	1.5 ± 0.3	5.3 ± 1.1	9.5 ± 1.9	0.08 ± 0.02	0.08 ± 0.02	
South-Nucleus	-600~600	39 ± 8	142 ± 28	254 ± 51	1.12 ± 0.22	1.89 ± 0.38	
South-OF-Blue	$-240 \sim 360$	0.8 ± 0.2	4.1 ± 0.8	9.9 ± 2.0	0.07 ± 0.01	0.10 ± 0.02	

- Northern outflow (by starburst) -

- 1. Outflow shows lower CO SLED than nucleus.
 - → lower excitation condition (since τ_{CO} >>1 even at nucleus) → similar with starburst driven outflow in M82 (Weiss+05)

- Northern outflow (by starburst) -

Dense gas outflow is not detected
 similar/smaller dense gas fraction (e.g., HCN/CO) in outflow
 → similar with starburst driven outflow in NGC 253 (Walter+17)

- Northern outflow (by starburst) -

 → Molecular Outflow is directly expelled from nucleus (negative feedback)

1. expelled from nucleus \rightarrow expand \rightarrow low dens. and temp.. 2. the diffuse gas is selectively expelled from the core.

1. Outflow shows higher CO-SLED than nucleus \rightarrow Highly excited and/or optically thin outflow

2. Dense gas outflow is detected

→ HCN and HCO+ outflow is mainly from southern galaxy (spacial distribution is similar with H₂ outflow) (no clear counter part of blue-shifted gas in northern galaxy)

2. Dense gas outflow is detected

→ HCN and HCO+ outflow is mainly from southern galaxy (spacial distribution is similar with H₂ outflow) (no clear counter part of blue-shifted gas in northern galaxy)

3. Higher dense gas fraction (e.g., HCN/CO) in outflow \rightarrow dense gas is newly formed

- Southern outflow (by AGN)-

Denser and hotter in outflow than in nucleus

RADEX modeling & Bayessian estimation (van der Tak et al., 2007, Kamenetzky et al., 2015)

High excitation condition, hot H₂ detection, high dense gas fraction

jet and ISM interaction \rightarrow condense gas \rightarrow star formation (like IC5063; type 2 AGN elliptical galaxy)(e.g.,Dasyra+16) (modeled by Wagner et al. 2016)

Summary

Starburst triggered outflow low CO-SLED, no dense gas \rightarrow low excitation

- \rightarrow directly expelled from nucleus
- \rightarrow negative feedback

Outflow associated with AGN jet increasing CO-SLED (> 1), dense gas outflow → high excitation, high dense gas fraction → jet and ISM interaction → positive feedback?

Michiyama et al., 2017 in prep