

gwen.williams@astro.cf.ac.uk

@awenows

Gravity drives the evolution of infrared dark hubs

Gwen Williams & Nicolas Peretto,

Adam Avison, Ana Duarte-Cabral, Gary Fuller.

Williams, Peretto et al. 2017, A&A, submitted

The SDC13 hub

Three colour image **R** 70µm HIGAL **G** 24µm MIPSGAL **B** 8µm GLIMPSE

The SDC13 hub

- NH₃(1,1) and NH₃(2,2)
- New, combined data set from the JVLA interferometer and GBT single-dish
- 7 times better angular resolution than old data
 - ~4", 0.07pc scales

The SDC13 hub

Velocity width

JVLA+GBT combined $NH_3(1,1)$ velocity width

IRAM 30m N₂H+(1,0) emission Greyscale: Spitzer 8µm image

Velocity width is seen to increase with column density along the filament spines.

 $\sigma_{NT} = \sqrt{\frac{\Delta V_{obs}^2}{8 \ln 2} - \frac{k_b T}{m_{\rm NH_3}}}$

Supersonic behaviour seen to correspond well the with the positions of 68% of cores (white histograms).

Starless cores <u>WITH</u> ∆V peaks

Starless cores <u>WITHOUT</u> ΔV peaks

On average, ΔV peaks are 1.5x broader than non-peaked cores.

Starless cores <u>WITH</u> ∆V peaks

Starless cores <u>WITHOUT</u> ∆V peaks B5 region of Perseus Pineda et al. (2010)

Troughs in ΔV interpreted as dissipation of turbulence

- Transonic filaments expected out of turbulent ISM — supersonic shocks create stagnation regions where turbulent energy is dissipated
 - SDC13, with mostly transonic filaments, seems to represent such a post-shock region
- Supersonic nature of SDC13 cores then purely generated by gravity, representing accumulation of material, converting GPE into KE in the process

- Truly starless cores are central to core accretion models of massive star formation
- Other sources of ΔV peaks in the "starless cores":
 - Deeply embedded protostars
 - Already sub-fragmented into core systems
- My accepted ALMA Cycle 5 proposal will settle the issue

Evolution of the virial ratio

$$\alpha_{vir} = \frac{5a_{eff}^2R}{GM}$$

Virial ratio evolves from very subvirial in the larger filament, towards less sub-virial/virial at the cores.

> A conclusion also reached by Peretto et al. (2017) in prep

Evolution of the virial ratio

$$\alpha_{vir} = \frac{5a_{eff}^2R}{GM}$$

can be analytically described by,

$$\alpha_{vir} = 2\frac{E_{k,0}}{|E_g|} + 2\epsilon \left(1 - \frac{|E_{g,0}|}{|E_g|}\right)$$

where ε is the energy conversion efficiency.

Evolution of the virial ratio

Average $\varepsilon \sim 20\%$

$$\alpha_{vir} = \frac{5a_{eff}^2R}{GM}$$

can be analytically described by,

$$\alpha_{vir} = 2\frac{E_{k,0}}{|E_g|} + 2\epsilon \left(1 - \frac{|E_{g,0}|}{|E_g|}\right)$$

where ε is the energy conversion efficiency.

Cores with peak in velocity width.

Prestellar and hub centre cores.

Cores with no peak in velocity width.

Gravitational acceleration

$$|\boldsymbol{a}_{j}| = \left| \sum_{i \neq j} \frac{Gm_{i}}{r_{i,j}^{3}} \boldsymbol{r}_{i,j} \right|$$

Gravitational acceleration

$$|\boldsymbol{a}_{j}| = \left| \sum_{i \neq j} \frac{Gm_{i}}{r_{i,j}^{3}} \boldsymbol{r}_{i,j} \right|$$

- Acceleration increases towards hub centre
- Largest acceleration gradients at the centre of the hub

Gravitational acceleration

$$|\boldsymbol{a}_{j}| = \left| \sum_{i \neq j} \frac{Gm_{i}}{r_{i,j}^{3}} \boldsymbol{r}_{i,j} \right|$$

- Large scale oscillations in acceleration prevail with the removal of density fluctuations
- Hub morphology is the main driver of the SDC13 kinematics

Conclusions

- Velocity width of NH₃ increases towards 68% of starless cores in SDC13
 - represents the conversion of GPE into KE during accretion
- Acceleration gradients largest at hub centre, coinciding with the largest starless core
 - Hub morphology is the main driver of SDC13 kinematics

