

INVESTIGATING DENSE GAS AND STAR FORMATION IN THE ANTENNAE GALAXIES (NGC 4038/39) USING ALMA

Ashley Bemis Christine Wilson

$L_{TIR} - L_{HCN}$: LINEAR (GALAXIES)

- Gao & Solomon 2004 study of 65 galaxies:
 - SFR traced by infrared luminosity: $L_{IR} \propto SFR$
 - Dense molecular gas traced by $HCN(1-0): L_{HCN} \propto M_{dense}$
- Show tight linear relationship between SFR and dense gas

Gao & Solomon 2004a

$L_{TIR} - L_{HCN}$: LINEAR (CLUMPS)

- Relationship extends to MW massive clumps (Wu+2005,2010)
- Sub-galactic scales in between

$L_{TIR} - L_{HCN}$: CASE STUDIES

• Case studies:

- Study relationship on a sub-galactic scale
- Detailed information on (S)GMCs
- Bigiel+2015 use CARMA to study brightest regions in Antennae

THE ANTENNAE: NGC 4038/39

- Nearest pair of interacting/merging galaxies (22 Mpc, Schweizer+2008)
- Burst of star formation in overlap region
- Two nuclei:
 - NGC 4038 (north)
 - NGC 4039 (south)

HST RGB: 658, 500, 435 nm

ANTENNAE DATA

- Dense molecular gas (M_{dense}):
 - ALMA HCN(1-0) [magenta]
 - HCO⁺ (1-0)
 - HNC (1-0)
- Bulk molecular gas (M_{H2}):
 - OVRO CO(1-0) [cyan] (Wilson+2000)
- SFR tracer:
 - Herschel 70 micron [Grayscale]
 - Convert 70 micron → TIR (Galametz+2013)

I. L_{IR} - L_{HCN} ANTENNAE: "PIXEL BY PIXEL"

- Split into grid of square apertures
- Apertures 7.0x7.0 arcsec
- Take apertures above sensitivity limit

I. L_{IR}-L_{HCN} ANTENNAE: "PIXEL BY PIXEL"

2. L_{IR}-L_{HCN} ANTENNAE: ELLIPTICAL APERTURES

- Selected apertures around clumps identified by CPROPS (Rosolowsky & Leroy 2006, 2011)
- Sizes of apertures vary with extent of emission

Bemis et al. 2017, in prep.

Bemis et al. 2017, in prep.

RESULTS:
$$\Sigma_{SFR} - \Sigma_{M,DENSE}$$

Bemis et al. 2017, in prep.

STAR FORMATION EFFICIENCY OF DENSE GAS

- L_{TIR}/L_{HCN} = lower in nuclei than in overlap
 - N4038 ~ 290 L $_{\odot}$ / K km/s pc²
 - N4039 ~ 560 L $_{\odot}$ / K km/s pc 2
 - Average ~ 1800 L_{\odot} / K km/s pc^2
- L_{TIR}/L_{HCN} = Star forming efficiency of dense gas, SFE_{dense}
- Nuclei lower L_{TIR}/L_{HCN} , despite higher L_{HCN}/L_{HCO}

Bemis et al. 2017, in prep.

DENSE GAS FRACTION

- Nuclear regions show enhancement in HCN emission relative to CO (Schirm+2016)
- L_{HCN}/L_{CO} = dense gas fraction, f_{dense}

WHAT PHYSICS DRIVES THIS VARIATION IN $L_{\rm IR}\text{-}$ $L_{\rm HCN}$ Relationship?

- Is L_{HCN} ~ M_{dense} constant?
 Probably not.
- CO conversion factor varies with environment, different types of galaxies (Bolatto+ 2013)
- Evidence X_{HCN} lower in (U)LIRGs (Graciá-Carpio 2008)

WHAT PHYSICS DRIVES THIS VARIATION IN $L_{\rm IR}\text{-}$ $L_{\rm HCN}$ Relationship?

- Is L_{HCN} ~ M_{dense} constant?
 Probably not.
- CO conversion factor varies with environment, different types of galaxies (Bolatto+ 2013)
- Evidence X_{HCN} lower in (U)LIRGs (Graciá-Carpio 2008)

HOW DO WE TEST THE L_{HCN}-M_{DENSE} RELATIONSHIP?

- I. Extragalactic Studies: multi-line excitation analyses to derive density, temp., abundances
- 2. Galactic Studies: Can compare independent tracers of mass (e.g. dust mass) with L_{HCN} !

17A JCMT HCN 4-3 OBS OF AQUILA

CONCLUSIONS & FUTURE WORK

- Regions of Antennae system extend the Gao & Solomon (2004) sample in the Pixel by Pixel analysis
- Antennae system appears sublinear analysis over "individual" sources
- Nuclei appear to have lower SFE_{dense} possible biases in our observational tracers?
- $L_{HCN} \neq M_{dense}$?:
 - Higher HCN abundance?
 - Excitation effects?

• More Work:

- Antennae: do multi-line excitation analyses to derive density, temp., abundances,
- Perform analysis on other extragalactic systems
- Galactic work: Compare independent tracers of mass (e.g. dust mass) with L_{HCN}!

VARIATIONS WITH DUST TEMPERATURE

VARIATIONS WITH DUST TEMPERATURE

MECHANICAL HEATING

- Exchange reaction: H + HNC $\leftarrow \rightarrow$ H + HCN
- L_{HNC}/L_{HCN} ratio indicates temperature, mechanical heating
- L_{HNC}/L_{HCN}:
 - higher in N4038 (~0.377)
 - lower in N4039 (~0.25) (Schirm + 2016)

IONIZATION FRACTION & SF GAS

- HCO⁺ sensitive to ionization fraction
- HCO⁺ abundance reduced in SF and highly turbulent gas

CONSTRAINING $L_{\rm HCN}\text{-}M_{\rm DENSE}$ IN THE MW

- Observations of HCN 4-3 in Galactic GMCs
- Sources with accurate dust column density maps – HGBS / HOBYS
 - Cygnus X
 - Aquila

CHECKING FOR BIASES: SFR