The EMPIRE survey: ¹³CO(1-0) emission across nearby disks

Diane Cormier

Marie-Curie Fellow, AIM/CEA Saclay

Motivation: efficiency of star formation

From CO studies, efficiencies of star formation – SFR/H₂ – vary on global and kpc-scales in galaxies (*e.g. Kennicutt & Evans 2012, Leroy et al. 2013*)

How do efficiencies depend on physical conditions of the gas? How does the dense gas mass fraction (HCN/CO) vary and why? Is the rate of star formation in dense gas universal?

The EMPIRE survey HCN, HCO+, HNC, CS, CO and isotopologues: ¹³CO, C¹⁸O, H¹³CN, H¹³CO+, H¹³NC

EMIR Multi-line Probe of the ISM Regulating Galaxy Evolution

PI: F. Bigiel, 600 hr IRAM Large Program 2015-2017

-- Full maps of 9 disk galaxies

-- 1.5 kpc linear resolution

PI: A. Leroy, 10 hr ALMA Cycle 3

- -- Inner 1/3 disk of 4 galaxies
- -- 300 pc linear resolution

Bigiel et al. 2016, Jiménez-Donaire et al. 2017a,b, Leroy et al. 2017a, Gallagher et al. subm., Cormier et al. to be subm.

The power of multi-line spectroscopy and importance of isotopologues

 Need a suite of lines to access physical conditions and, e.g., map the density distributions

 Sensitivity of lines to density depends on opacity (line trapping effect; *e.g. Shirley 2015*)

 Optically thin tracers provide a direct estimate of gas column densities and masses (with some assumptions...)

Focus on ¹³CO – H¹³CN, H¹³CO+ tough to get, see Jiménez-Donaire et al. 2017b

¹³CO(1-0) emission maps

Cormier et al. to be subm.

rms ≈ 3mK resolution ≈ 1.5kpc

$[^{12}CO/^{13}CO] = 60$

$\Re = {}^{12}CO(1-0)/{}^{13}CO(1-0)$ ratio maps

Local thermodynamic equilibrium

Assumptions:

- $\tau_{13} \le 1$ while $\tau_{12} >> 1$,
- $-T_{\rm ex,12} = T_{\rm ex,13} = 20 \,\rm K,$
- both lines have the same filling factor,
- Optical depths and column densities:

$$\tau_{13} = -\ln(1 - \frac{I_{13}}{I_{12}}) \qquad \tau_{12} = \left[\frac{{}^{12}\text{CO}}{{}^{13}\text{CO}}\right] \times \tau_{13}$$
$$N_{13} = \frac{3.0 \times 10^{14}}{1 - \exp(-5.29/T_{\text{ex},13})} \times \frac{\tau_{13}}{1 - \exp(-\tau_{13})} \times I_{13} \text{ [cm}^{-2]}$$
$$N_{\text{H2}} = \left[\frac{\text{H}_2}{{}^{13}\text{CO}}\right] \times N_{13}$$

- Variations in the I₁₂ / I₁₃ ratio mostly linked to:
 - abundance effects
 - opacity effects

Column densities under LTE conditions

- Mean opacity of ¹³CO is 0.1 (scatter of 0.1 dex in the maps) $\Leftrightarrow \tau_{12} \approx 6$
- Is ¹³CO a more direct estimator of the column density?

Mean column density of ¹³CO around $10^{15} \text{ cm}^{-2} \Leftrightarrow \text{N}(\text{H}_2) \approx 10^{21} \text{ cm}^{-2}$ ¹³CO underestimates N(H₂) by a factor of 2-3 compared to ¹²CO and dust

Column densities under LTE conditions

- Mean opacity of ¹³CO is 0.1 (scatter of 0.1 dex in the maps) $\Leftrightarrow \tau_{12} \approx 6$
- Is ¹³CO a more direct estimator of the column density?

Mean column density of ¹³CO around $10^{15} \text{ cm}^{-2} \Leftrightarrow \text{N}(\text{H}_2) \approx 10^{21} \text{ cm}^{-2}$ ¹³CO underestimates N(H₂) by a factor of 2-3 compared to ¹²CO and dust

⇒ Non-LTE effects such as sub-thermal excitation of ¹³CO (significant diffuse ¹²CO emission in the beam) and abundance variations likely at play

see also, e.g., Goldsmith et al. 2008, Heyer et al. 2009 Meier & Turner 2004, Szucs et al. 2016

$\Re = {}^{12}CO(1-0)/{}^{13}CO(1-0)$ profiles

- More variations of the ¹²CO/¹³CO ratio in the centers
- High ratios are found in starburst-dominated nuclei galaxies
- Ratios higher than in the MW

$\Re = {}^{12}CO(1-0)/{}^{13}CO(1-0)$ versus $\Sigma(SFR)$

+ constant ${}^{13}CO/C{}^{18}O$ ratios \Rightarrow high \mathcal{R} to lower ${}^{12}CO$ optical depth

$\Re = {}^{12}CO(1-0)/{}^{13}CO(1-0)$ versus Σ (SFR)

optical depth

Cormier et al. to be subm.

August 11, 2017

$\Re = {}^{12}CO(1-0)/{}^{13}CO(1-0)$ versus $\Sigma(SFR)$

+ constant ${}^{13}CO/C{}^{18}O$ ratios \Rightarrow high \mathcal{R} to lower ${}^{12}CO$ optical depth

Jiménez-Donaire, Cormier et al. 2017a

⇒ Strong evidence for varying abundances within galaxies

A $^{13}CO(1-0)$ -to-H₂ conversion factor

Suppressed α_{12CO} in the galaxy centers: opacity (velocity gradients, diffuse gas) or excitation effects?

A ¹³CO(1-0)-to-H₂ conversion factor

- Empirical derivation of X(¹³CO) still reveals a large variations
- Low α_{12CO} values in centers do not disappear with ¹³CO excitation dominates?
- Systematic problems in the dust method?

Conclusions

- In LTE, ¹³CO underestimates the H₂ column density compared to standard methods (¹²CO, dust)
- ¹³CO does not seem to trace better (more tightly) the molecular gas than ¹²CO
- Variations in the ¹²CO/¹³CO intensity ratio mostly in galaxy centers and due to opacity <u>and</u> abundance effects

<u>Next step</u>: modeling for quantitative assessment of those effects in combination with dense gas observations

Conclusions

Follow-ups:

- direct abundance measurements in centers (IRAM, PI. MJ Jiménez-Donaire)
- higher J transitions for excitation
- starburst environments (IRAM, PI A. Usero)

More dense gas work to come

