# How primordial star formation shaped the present day dwarf galaxies

Robbert Verbeke

Bert Vandenbroucke Sven De Rijcke









#### Why dwarf galaxies

Large number of them

Shallow gravitational potential

Extreme end of galaxy formation

Challenges for cosmological and galaxy evolution models





#### Models Of Realistic dwarfs In Action

- MoRIA
- Gadget-2 (N-body/SPH) (Springel et al. 2005)
- Dwarf galaxy scale
- High resolution ( $m_{bar} = 10^{3-4} M_{\odot}$ ,  $e_f = 5-10 pc$ )
- Cosmologically motivated merger tree (Cloet-Osselaer et al. 2014)
- Star formation
- Gas cooling and heating (De Rijcke et al. 2013)
- Feedback from supernovae and UV radiation from massive stars
- Chemical enrichment
- Heating by cosmic UV background
- Advanced treatment of the multi-component, multi-phase ISM (Vandenbroucke et al. 2013)







#### Mock observations



Mock HI spectrum:  $v_c = W_{20}/2$ 

Also see Verbeke et al. 2017





## **Baryonic Tully-Fisher Relation**







#### First stars

- Out of pristine, unenriched gas ([Fe/H] < -5)</li>
- Top-heavy IMF (Susa et al. 2014)
- 4 x more SNII energy
- 40 x more UV radiation from massive stars
- Faster SN feedback
- Lower star formation at early times







## Baryonic Tully-Fisher relation II







## **Baryonic Tully-Fisher relation II**









## Stellar metallicity

#### From RGB stars







#### Star formation rates at z=0







## HI sizes







#### HI substructure

 $\log_{10}(\Sigma_{\rm HI}~[{\rm M}_{\odot}~{\rm pc}^{-2}])$ 







#### HI substructure







## Metallicity distribution function







## Metallicity distribution function







#### Stellar mass - Halo mass relation







#### Star formation histories

Broad range of star formation histories is reproduced







# Color-Magnitude Diagrams







## Color-Magnitude Diagrams







#### Summary

- Dwarf galaxies are a challenge for theoretical models
- Advanced models and analysis techniques are necessary
- First generation of stars had a great influence
- Realistic dwarfs can be simulated → MoRIA

Verbeke, Vandenbroucke & De Rijcke (2015)

Vandenbroucke, Verbeke & De Rijcke (2016)