Star formation and AGN activity in the most luminous LINERs in the local universe

Mirjana Pović

Ethiopian Space Science and Technology Institute (EORC-ESSTI), Ethiopia

> Institute of Astrophysics of Andalucía (IAA-CSIC), Spain

SFDE17: from Local Clouds to Distant Galaxies, 06 - 12 of August, 2017, Quy Nhon, Vietnam

Star formation and AGN activity in the most luminous LINERs in the local universe

Pović et al. 2016, MNRAS, 462, 2878

In collaboration with: Isabel Márquez (IAA-CSIC, Spain) Hagai Netzer (Tel Aviv University, Israel) Josefa Masegosa (IAA-CSIC, Spain) Enrique Pérez (IAA-CSIC) Raanan Nordon (Tel Aviv University, Israel) William Schoenell (IAA-CSIC, Spain)

ALMA image of the continuum emision at 236 GHz of SDP 81

SDP.81 ALMA 236 GHz (< 2000 klambda)

09^h03^m11^s.7 11^s.6 11^s.5 11^s.4 Right Ascension (J2000)

ALMA image of the continuum emision at 236 GHz of SDP 81

Introduction: LINERs

LINERs = Low Ionization Nuclear Emission-line Regions

Spectral Classification (Heckman 1980)

- Optical spectra dominated by emission lines from low ionization species ([OI], [NII], [SII])

- Early-type galaxies

- Lower luminosities than Seyferts

Introduction: LINERs

LINERs = Low Ionization Nuclear Emission-line Regions

AGN (Active Galactic Nuclei):

- high luminosities
- very compact regions
- usually temporaly variable (from hours to years)
- more efficient energy/mass than normal stellar processes (Fabian 79)

How normal galaxy becomes active?

Connection between active and non-active nuclei?

Fundamental for understanding the picture of galaxy formation and evolution. Unification scheme due to orientation: Urry and Padovany (1995)

AGN (Active Galactic Nuclei):

- high luminosities
- very compact regions
- usually temporaly variable (from hours to years)

- more efficient energy/mass than normal stellar processes (Fabian 79)

1. High Luminosity AGNs (HLAGN): L > 1043 erg/sec

2. Low luminosity AGNs (LLAGN):

- $-L \sim 10^{4^2} 10^{4^3} \text{ erg/sec}$
- most of AGN population
- eventual connection active/non-active nuclei

Unification scheme due to orientation: Urry and Padovany (1995)

AGN (Active Galactic Nuclei):

- high luminosities
- very compact regions
- usually temporaly variable (from hours to years)

- more efficient energy/mass than normal stellar processes (Fabian 79)

1. High Luminosity AGNs (HLAGN):

 $L > 10^{43}$ erg/sec

2. Low luminosity AGNs (LLAGN):

- $-L \sim 10^{42} 10^{43} \text{ erg/sec}$
- most of AGN population
- eventual connection active/non-active nuclei

Unification scheme due to orientation: Urry and Padovany (1995)

BUT, difficult detection due to extinction and contamination by circumnuclear star formation.

AGN (Active Galactic Nuclei):

- high luminosities
- very compact regions

Unification scheme due to orientation: Urry and Padovany (1995)

BUT, difficult detection due to extinction and contamination by circumnuclear star formation.

Light dominated by host galaxy

Direct AGN light

Star formation in LINERs

Tommasin et al. 2012

LINERs from zCOSMOS at

z ~ 0.3 (Herschel-PACS FIR data)

- L(IR) from 10⁴⁴ erg/s and higher AGN luminosities

 later morphological types (82% of their sample)

- LINERS at z ~ 0.3 have LFIR 2 orders of magnitude higher than those for nearby LINERs

Star formation in LINERs

Tommasin et al. 2012

<u>Their interpretation:</u>

- smaller nuclear regions in nearby LINERs
- selection effects in FIR (35 out of 97 LINERs)
- insufficient population studied systematically with sensitive FIR instruments in the local universe

real evolution in the AGN and SF properties between z ~ 0 and z ~ 0.3
 (or the combination of several)

Star formation in LINERs

Tommasin et al. 2012

<u>Their interpretation:</u>

- smaller nuclear regions in nearby LINERs
- selection effects in FIR (35 out of 97 LINERs)
- insufficient population studied systematically with sensitive FIR instruments in the local universe

- real evolution in the AGN and SF properties between $z \sim 0$ and $z \sim 0.3$

(or the combination of several)

Our proposal

To conduct a detailed, spatially resolved, ground based spectroscopic study of the nuclear regions of the most luminous local LINERs (MLLINERs) and to use different methods to measure their SFRs

Sample selection

Luminous LINERs (LLINERs) selection, in terms of their AGN luminosity:

LAGN measured through [OIII] and [OI] (Netzer 2009)
 → ~ 150 LLINERs with logLAGN > 44.3 (erg/sec)

<u>The most luminous LINERs (MLLINERs) selection, in terms of their AGN and</u> <u>SF luminosity:</u>

SFR measured with Dn4000 method → LSF (Brinchmann et al. 2004)
 → selected 47 sources with logLSF > 43.3 (erg/sec)

The data: optical spectroscopy

CAHA/TWIN data (PI. I. Márquez) - 24 nights (6 runs from October 2013 to July 2014) - long-slit spectra for 35 (+7) sources - spectral range: in red 6700 – 8300 Å, and in blue 3500 – 6500 or 3700 – 7000 Å - slit size: 1.2 or 1.5 arcsec

NOT/ALFOSC data (PI. I. Márquez)

- 4 nights (May 2013)

- long-slit spectra for 7 (+3) sources

- spectral range: in red 5825 8350 A and
- in <mark>blue</mark> 3200 5550 A
- slit size: 1.3 arcsec

→ **42 MLLINERs observed in total (out of 47)**

The data: FIR

<u>Herschel/PACS data</u> (PI. H. Netzer) - observations carried out for 6 sources - 70 and 100 µm - standard data reduction using HIPE tools

IRAS data

public data available for 13 sources
(3 overlap with Herschel observations)
flux densities available in: 12, 25, 60, and 100 μm

→ FIR data available for 16 MLLINERs in total

Analysis and measurements: STARLIGHT fittings of nuclear regions An example

Intermediate and old stellar populations dominate the central regions of MLLINERs

- <SFR> ~ 3 [Mo/yr] Dn4000 and STARLIGHT (nuclear spectra)
- <SFR> ~ 13 [Mo/yr] in FIR (entire galaxy)
- **<SFR> ~ 10 [Mo/yr]** Dn4000 and STARLIGHT (entire galaxy)

Morphology

	7	1			B02	B03	B04	B05	B06
F01 J030959.83+001758.3	F02 J074144.3+211057	F03 J084524.02+391443.5	F04 J083823.91+490241.2	F06 J093958.8+345804.4	J081838.65+232909.4	J083818.52+333442.7	J085511.5+001308.8	J092657.21+083749.9	J104103.72+110546.2
							۰.		
		ALC: NO	States -		B07 J110213.05+661002.6	B08 J112111.56-001737.9	B09 J112640.66-014137.6	B10 J121454.41+015458.2	B11 J123150.15+582128.3
F07 J091256.06+465201.5	F09 J112216.38+544142.3	F12 J120928.68+110150.7	F13 J121520.55+053201	F14 J120037.52+043149.4	•				
				•	B12 J124308.57+014343.6	B13 J124754.95-033738.5	B14 J124913.79+151510	B15 J134212.19-001736.4	B16 J135038.61+534352
F15 J133525.14+455327.8	F16 J170330.7+205058.1	F17 J171814.47+641735.6	F19 J210450.52+002131.4	F20 J221312.46+131941.8		•			1 . A.
٠		•	١.	181	B17 J140506.24+024618.3	B18 J141132.95+451710	B19 J152247.2+592110.2	B20 J152613.01+035305.5	B21 J153711.92+410418.1
F21 J225122.06-085722.9	F22 J235249.11+140244.3	F23 J003707.81+002436.5	F24 J013455.38-084238.7	B01 J033410.54+010612	Star F 3		1 Co. 1		Star and
					B22 J162143.24+294332.4	B23 J215056.57-064910.9			
			1		•	•	SDSS	colour i	mages

ALL MORPHOLOGIES: 40% E, 20% S, 25% peculiar (15% unclassified) → higher population of E galaxies (~ 10%) than for LLINERs

AGN and SF luminosities of MLLINERs

Why earlier-types and lower stellar masses than LLINERs, but higher SFRs?

=> peak of relative growth rates of inner and outer galaxy regions correspond to the stellar mass of $6 - 7 \times 10^{10} M_{\odot}$

For MLLINERs the median total $M^* = 6.58 \times 10^{10}$ Mo \rightarrow corresponds to the peak of relative rate of transforming gas into stars \rightarrow highest SFRs

MLLINERs and the main sequence (MS)

of SF galaxies

Leslie et al. 2016 (> 60% of all low-redshift LINERs)

11.5

Summary and main conclusions

Previous works characterised local LINERs as:

Hosted by massive and old early-type galaxies, with low extinctions, massive BHs, old stellar populations, and little or no star-formation

(Ho 1997, 2008; Kauffmann et al. 2003; Heckman & Best 2014)

- MLLINERs studied in this work have:
 - * all morphologies
 - * higher extinctions
 - * much higher SFRs

- This kind of LINERs first were detected at $z \sim 0.3$

- Their existence confirmed in the local universe (@z = 0.04 - 0.11) discarding an evolutionary scenario

- Same M*, SFRs, and LAGN at both redshifts

- They lie along the LAGN = LSF line hinting for co-evolution of the two properties

- Most of them lie on the MS of SF galaxies, with M* > 10¹ °Mo

-The fraction of LINERs on the MS depends on their AGN luminosity

- The median stellar mass of MLLINERs corresponds to the peak of relative growth rate of stellar populations

... and more initiatives in African context

- New MSc and PhD programs in A&A and space physics → e.g., Kenya, Uganda, Rwanda, Sudan, Ghana, Nigeria, Madagascar, Egypt, Algeria, etc.
- New institutional developments → e.g., GSSTI in Ghana, NASRDA in Nigeria, NARSS in Egypt, ESSTI in Ethiopia, etc.
 - New continental initiatives → African Union Space Strategy (in line with the UN Post-2015 development Agenda)
 - New long-term projects → SKA-Africa (South Africa + 8 Sub-Saharan African countries)
 - New collaborations → e.g., African European Radio Astronomy Platform (AERAP)

... and more initiatives in African context

- New MSc and PhD programs in A&A and space physics → e.g., Kenya, Uganda, Rwanda, Sudan Charron Nigeria, Madagascar,
- New institution
 N' SHARE OF YOUR KNOWLEDGE (1)
 N' SHARE OF YOUR KNOWLEDGE (1)
 N' SHARE OF YOUR KNOWLEDGE (1)
 VERY MUCH APPRECIATED (1)
 A + 8 Sub-

- New collaborations - e.g., Arrican - European Radio Astronomy Platform (AERAP)

Thanks for your attention!

And have a nice day!