Radiation-Hydrodynamical Simulations of Photoevaporating Protoplanetary Disks with Various Metallicities

<u>Riouhei Nakatani</u>¹, Takashi Hosokawa², Naoki Yoshida¹, Hideko Nomura³, Rolf Kuiper⁴

1: Univ. of Tokyo,

2: Kyoto Univ.,

3: Tokyo Inst. of Technology,

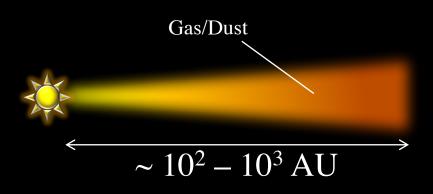
4: Univ. of Tübingen

(Nakatani et al. submitted to ApJ; arXiv: 1706.04570)

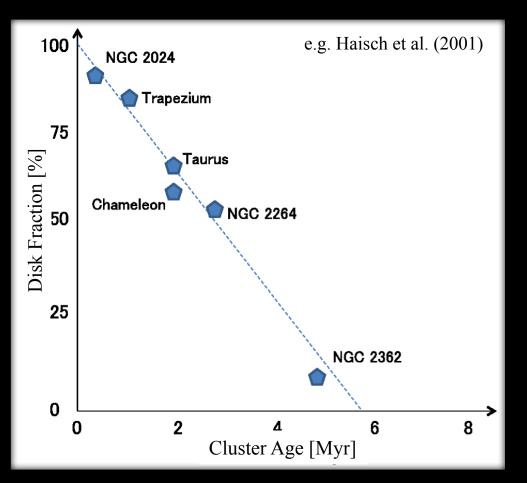
SFDE @ ICISE, August 10, 2017

Protoplanetary Disk

• Geometrically thin Keplerian disk around a pre-

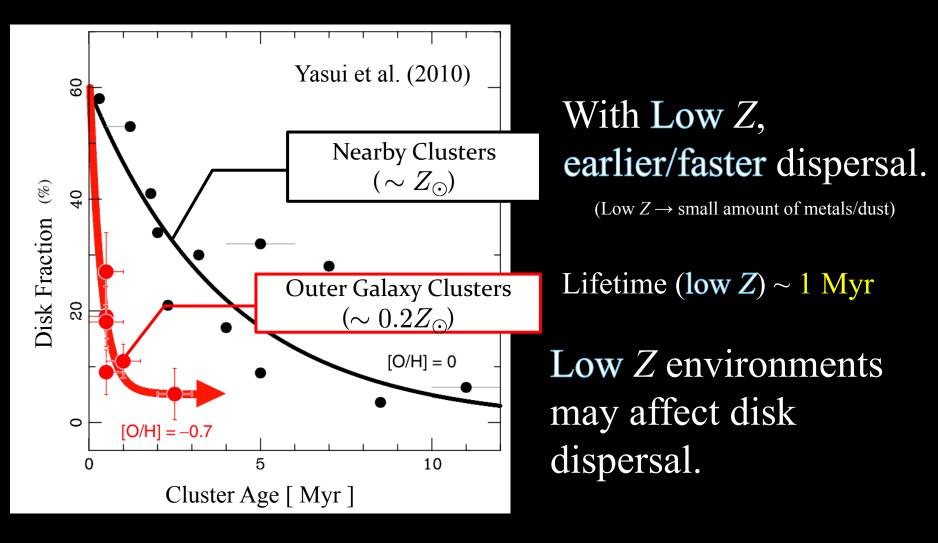

main-sequence star

- Main components ; Gas/Dust
- Birthplace of planets



HL Tauri disk

Lifetimes of Protoplanetary Disks


Older stars have Lesser number of disks

Typical lifetime of a disk $\sim 3-6 \text{ Myr}$

* Disk Fraction =

(disk-bearing members in a cluster) / (total number of members)

Metallicity Dependence of Lifetimes

What mechanism makes a disk disperse? - Photoevaporation -

FUV: (6 eV $\lesssim h\nu \lesssim 13.6$ eV) EUV: (13.6 eV $\lesssim h\nu \lesssim 0.1$ keV) X-rays: $(0.1 \text{ keV} \lesssim h\nu \lesssim 10 \text{ keV})$

Gravitationally bound disk

Photoevaporative flow

e.g., Bally & Scoville (1982); Shu et al. (1993), Hollenbach et al. (1994)

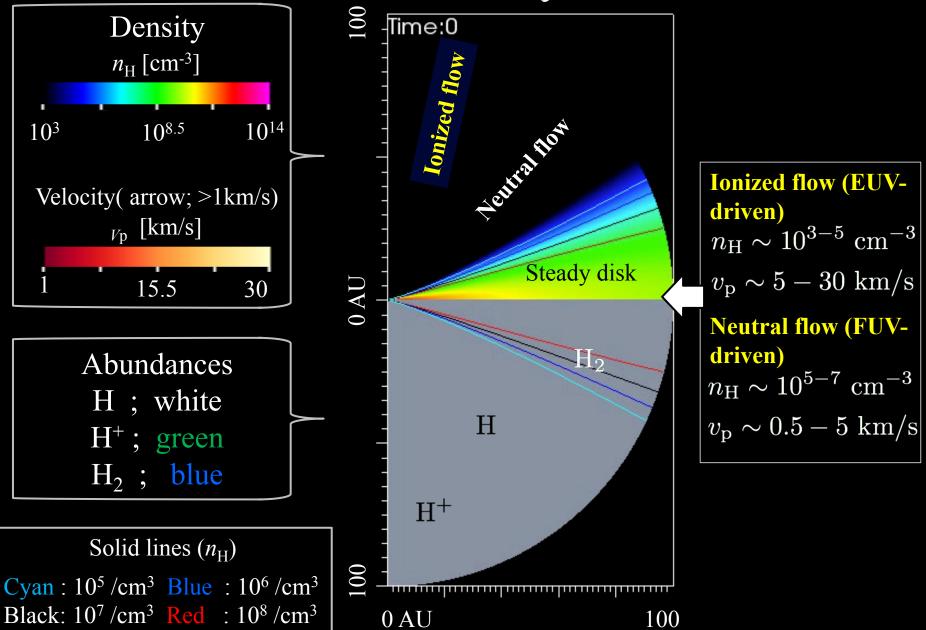
	FUV	EUV	X-rays
Main absorber	Dust	Atomic hydrogen	Metal elements
Attenuation column (solar metallicity)	$N_{ m H} \sim 10^{21} \ { m cm^{-2}}$	$N_{ m HI} \sim 10^{17} \ { m cm}^{-2}$	$N_{\rm H} \sim 10^{21} \ {\rm cm^{-2}}$

Our Aims:

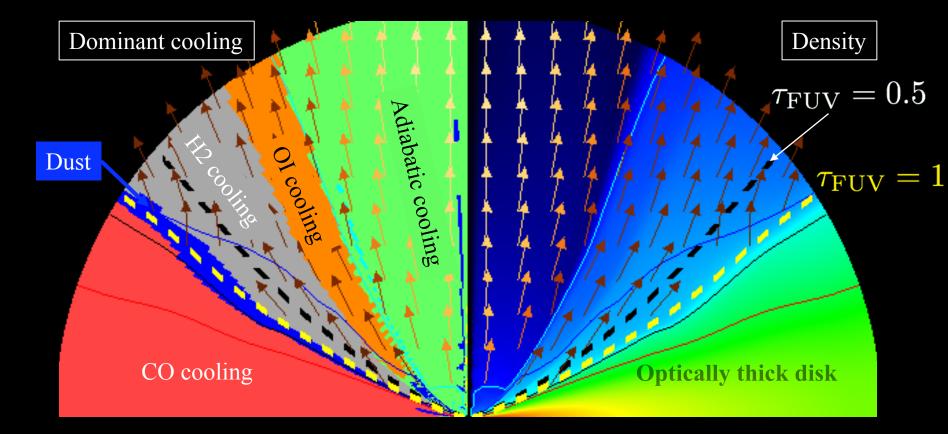
• To examine Z dependence of FUV/EUV photoevaporation rates to give implications to the Z dependence of the lifetimes

Methods (dust/metals are proportional to Z)

Hydrodynamics (PLUTO ver. 4.1) + EUV & FUV transfer (developed by RN) + dust IR transfer (developed by Rolf) + non-equilibrium Chemistry (developed by RN)

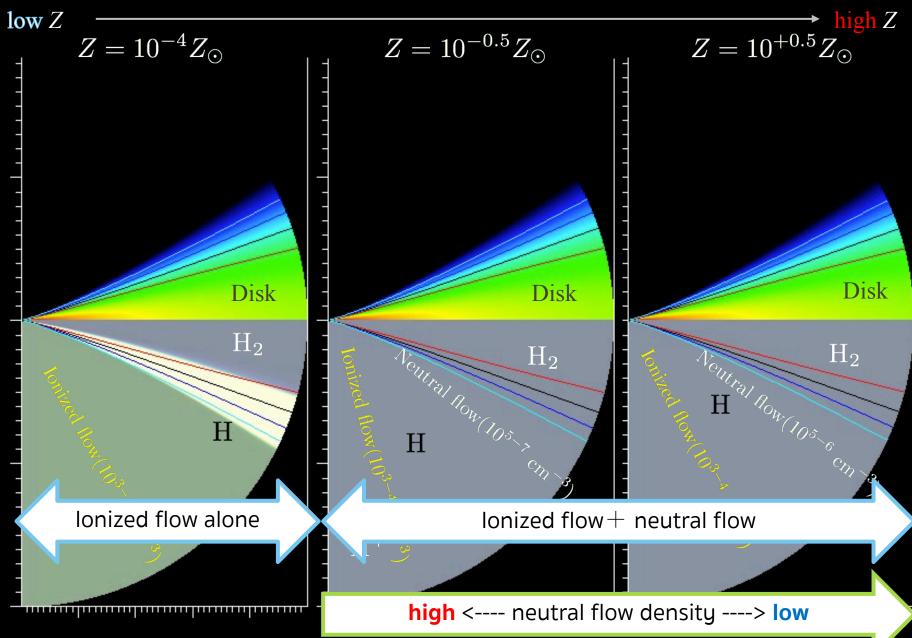

R $r = [1, 100] \,\mathrm{AU}$ $\theta = [0, \pi/2]$

EUV & FUV

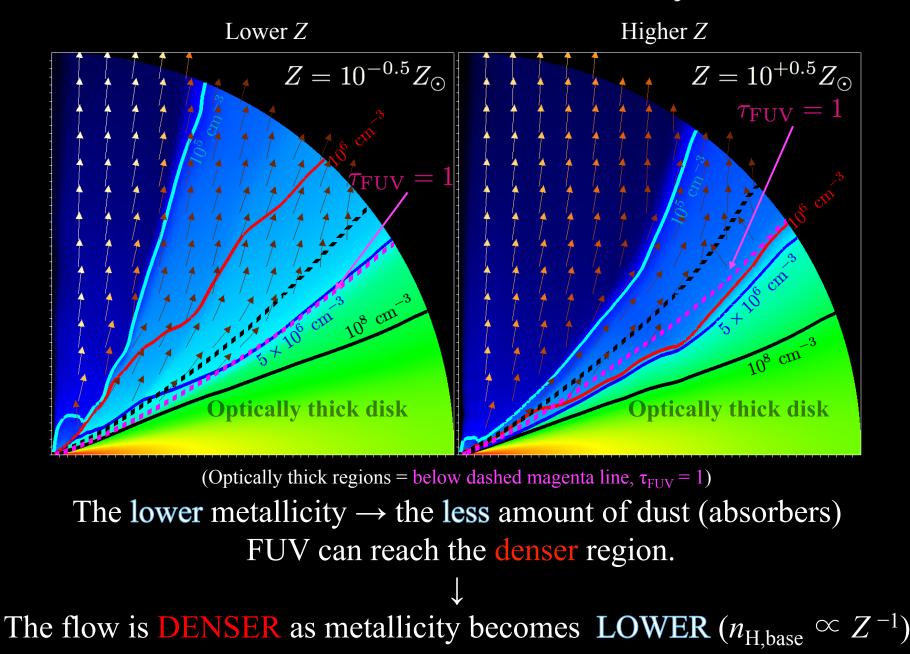

Z

	Basic Equations		Heating/Cooling processes		Chemical reactions
$\begin{split} & \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \boldsymbol{v} = 0 \\ & \frac{\partial \rho v_r}{\partial t} + \nabla \cdot (\rho v_r \boldsymbol{v}) = -\frac{\partial P}{\partial r} - \rho \frac{GM_*}{r^2} + \rho \frac{v_{\theta}^2 + v_{\phi}^2}{r} \end{split}$		< Photo-Heating > • photoionization (EUV) • photoelectric effect (FUV)		$H + e \longrightarrow H^{+} + 2 e$ $H^{+} + e \longrightarrow H + h\nu$ $H_{2} + e \longrightarrow 2 H + e$	
$\frac{\partial\rho v_\theta}{\partial t} +$	$egin{aligned} & \nabla \cdot (ho v_{ heta} oldsymbol{v}) &= & rac{\partial r}{\partial r} & ho & rac{r^2}{r^2} \ & abla \cdot (ho v_{ heta} oldsymbol{v}) &= & -rac{1}{r} rac{\partial P}{\partial heta} - ho rac{v_{ heta} v_r}{r} \ & abla onumber \ & abla v^l \cdot (ho v_{\phi} oldsymbol{v}) &= 0 \end{aligned}$		< Line cooling > • H ₂ , CO, • CII, OI, HI (Lya)		$H_{2} + H \longrightarrow 3 H$ $3 H \longrightarrow H_{2} + H$ $2 H + H_{2} \longrightarrow 2 H_{2}$ $2 H = H_{2} + H = 0 H$
	$V \cdot (H\boldsymbol{v}) = -\rho v_r \frac{GM_*}{r^2} + \rho \left(\Gamma - r^2\right)$	- Λ)	< Collisional cooling > • recombination (HII + e → H • dust-gas heat transfer	[)	$2 \operatorname{H}_{2} \longrightarrow \operatorname{H}_{2} + 2 \operatorname{H}$ $2 \operatorname{H} \longrightarrow \operatorname{H}^{+} + e + \operatorname{H}$ $2 \operatorname{H} \xrightarrow{\operatorname{dust}} \operatorname{H}_{2}$
	$egin{aligned} &+ abla \cdot (n_{ m H} y_i oldsymbol{v}) = n_{ m H} R_i \ &+ rac{P}{-1)} = rac{kT}{\mu m_{ m H} (\gamma - 1)} \end{aligned}$		Chemical species		$EUV + H \longrightarrow H^{+} + e$ $FUV + H_{2} \longrightarrow 2 H$ $FUV + CO \longrightarrow C^{+} + O$
$egin{aligned} & ho(\gamma-1) & \mu m_{ m H}(\gamma-1) \ & oldsymbol{F}_{ m local} = oldsymbol{F}_{ m local}(oldsymbol{r},t) \end{aligned}$		H H ⁺ H ₂ e CO CII OI		$C^+ + O \xrightarrow{CHx} CO$	

Solar Metallicity Disk



Photoevaporation "base"



Photoevaporative flow is launched from $\tau_{FUV} = 0.5 - 1$. The dominant cooling source is dust-gas collisional cooling there.

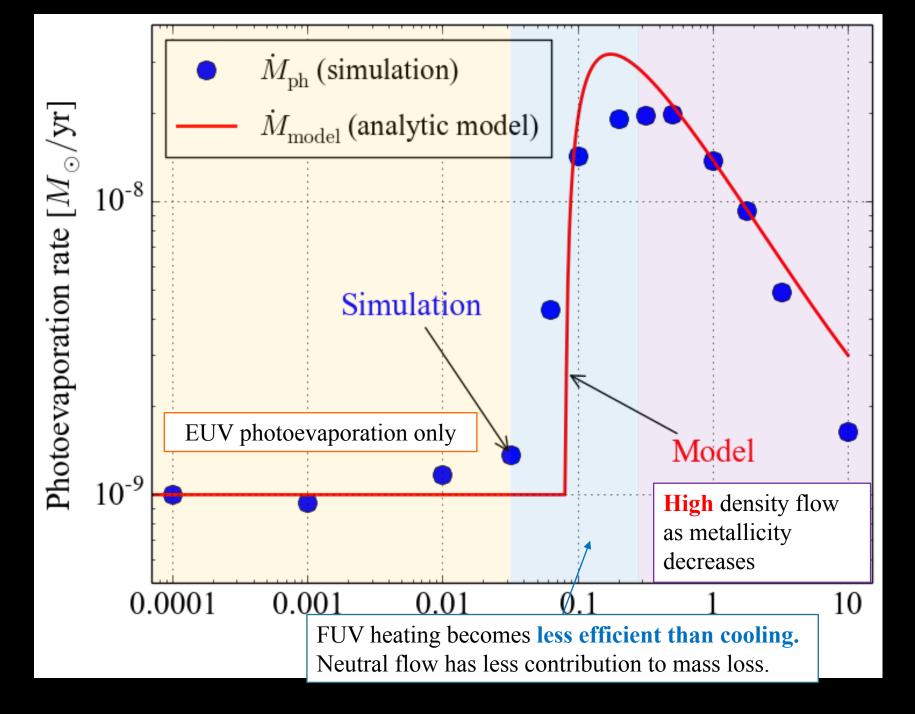
Various metallicities

1. Denser flow in lower metallicity

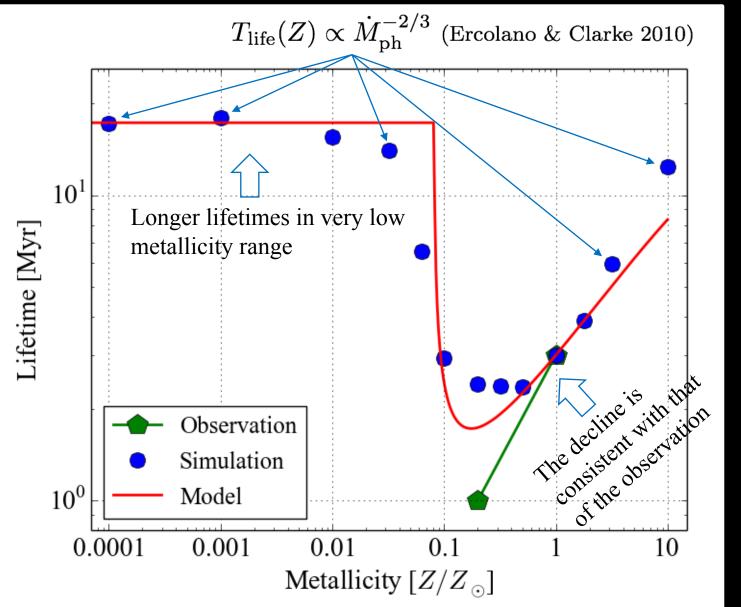
2. No neutral flow in lowest metallicity

No neutral flow \rightarrow <u>Gas cannot get sufficient energy at base</u>

Recall that dust-gas collisional cooling is dominant cooling at base.


Since dust cooling is a <u>collisional process</u> $n_{\rm d} \propto n_{\rm H}(Z/Z_{\odot})$ $n_{\rm H,base} \propto Z^{-1}$ (dust cooling at base) $\propto n_{\rm d,base} n_{\rm H,base} \propto n_{\rm H,base}^2 \frac{Z}{Z_{\odot}} \propto \left(\frac{Z}{Z_{\odot}}\right)^{-1}$

Since FUV heating is a photo-process


(FUV heating at base) $\propto L_{\rm FUV} e^{-\tau_{\rm d}} n_{\rm d} \propto n_{\rm d} \propto n_{\rm H, base} \frac{Z}{Z_{\odot}} \propto 1$

Compared with dust cooling, FUV heating becomes inefficient as metallicity decreases.

Resulting gas temperature becomes lower as metallicity decreases. Neutral flow cannot be excited in a very low metallicity range.

Estimated lifetimes

➤ Summary

- 1. Motivation: Observational metallicity dependence of lifetimes.
- 2. Methods: Hydrodynamical simulations with radiative transfer and non-equilibrium chemistry to examine the metallicity dependence of photoevaporation.
- 3. Results: Photoevaporation rates has a peak at $Z \sim 10^{-0.5} Z_{\odot}$, which reflects the metallicity dependence of FUV heating.
- 4. Conclusion: Our model would be consistent with the observed metallicity dependence of the lifetimes, and it predicts that the disks would have even longer lifetimes in the much lower metallicity environments $Z \leq 10^{-2} Z_{\odot}$.

≻ Future work

- FUV/EUV/X-ray photoevaporation
- Update chemistry and implement dust coagulation/accretion
- Dust dynamics