Radiation-Hydrodynamical Simulations of

Photoevaporating Protoplanetary Disks
with Various Metallicities

Riouhei Nakatani' ,Takashi Hosokawa?, Naoki Yoshida', Hideko
Nomura?®, Rolf Kuiper*

1: Univ. of Tokyo,

2: Kyoto Univ.,

3: Tokyo Inst. of Technology,

4: Univ. of Tubingen
(Nakatani et al. submitted to ApJ; arXiv: 1706.04570)

SFDE @ ICISE, August 10, 2017



Protoplanetary Disk

Geometrically thin Keplerian disk around a pre-
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Lifetimes of Protoplanetary Disks

. e.g. Haisch et al. (2001)
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Typical lifetime of a disk

~ 3-6 Myr
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* Disk Fraction =
(disk-bearing members in a cluster) / (total number of members)



Metallicity Dependence of Lifetimes

Yasui et al. (2010)

With Low Z,
ARl carlicr/faster dispersal.
I (Low Z — small amount of metals/dust)

Lifetime (low Z) ~ 1 Myr
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What mechanism makes a disk disperse?

— Photoevaporation —
e.g., Bally & Scoville (1982); Shuet al. (¥993), Holenbach et al. (1994)
FUV: (6 eV S hry < 13.6 eV) 0& Q\O‘N
EUV: (13.6 eV < hv < 0.1 keV) 00\00‘3 o
X-rays: (0.1 keV < hv < 10 keV) \]3(20‘
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Our Aims:
* To examine Z dependence of FUV/EUV photoevaporation rates to
give implications to the Z dependence of the lifetimes



Methods

Hydrodynamics (PLUTO ver. 4.1)
+ EUV & FUYV transfer (developed by RN)

Basic Equations

+ dust IR transfer (developed by Rolf)
+ non-equilibrium Chemistry (developed by RN) | 7%

Heating/Cooling processes
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Chemical species
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(dust/metals are proportional to Z)
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Solar Meta111c1ty Disk
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Ionized flow (EUV-
driven)
ng ~ 10372 cm

vp ~ 5 — 30 km/s

Neutral flow (FUV-
driven)

ng ~ 10°~7 cm
vp ~ 0.5 —5 km/s
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Photoevaporation “*base’

Dominant cooling Density

TFUV — 0.5

Photoevaporative flow is launched from 7z, =0.5—-1.
The dominant cooling source is dust-gas collisional cooling there.



Various metallicities

Z =10"*Z, Z =10"9%Z, Z =101%° 7,

low Z
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1. Denser tlow 1n lower metallicity
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(Optically thick regions = below dashed magenta line, ., = 1)
The lower metallicity — the less amount of dust (absorbers)
FUV can reach the denser region.

l
The flow is as metallicity becomes LOWER (ny; e < Z ')



2. No neutral flow 1n lowest metallicity

No neutral flow — Gas cannot get sufficient energy at base

Recall that dust-gas collisional cooling i1s dominant cooling at base.

Since dust cooling is a collisional process nq x ng(Z/Zg)|  [Hbase X 4

7\ 1
(dust cooling at base) Z—)
O] ©

Since FUV heating is a photo-process

Z
(FUV heating at base) « Lryye "9ng x ng x nH’baseZ_ x 1
®©

Compared with dust cooling,
FUV heating becomes inefficient as metallicity decreases.
l
Resulting gas temperature becomes lower as metallicity decreases.
Neutral flow cannot be excited in a very low metallicity range.
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High density flow
as metallicity
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FUYV heating becomes less efficient than cooling.
Neutral flow has less contribution to mass loss.




Estimated lifetimes

Tlife(Z) X M;h2/3 (Ercolano & Clarke 2010)
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» Summary
1. Motivation: Observational metallicity dependence of lifetimes.

2. Methods: Hydrodynamical simulations with radiative transfer
and non-equilibrium chemistry to examine the metallicity
dependence of photoevaporation.

3. Results: Photoevaporation rates has a peak at Z~ 107 Z),
which reflects the metallicity dependence of FUV heating.

4. Conclusion: Our model would be consistent with the observed
metallicity dependence of the lifetimes, and 1t predicts that the
disks would have even longer lifetimes 1n the much lower
metallicity environments Z = 1072 Z,.

> Future work
e FUV/EUV/X-ray photoevaporation
e Update chemistry and implement dust coagulation/accretion
e Dust dynamics



