

The Conditions for the Creation of Massive Stars and their Distribution

Anthony Marston (ESA-STScl) Alana Rivera Ingraham (ESA-ESAC) & the HOBYS, Hi-Gal Consortia

OVERVIEW

- Herschel studies of high mass star formation
- Our studies of far-IR/sub-mm clumps in W3
- Key observational ingredients and triggering
- Relationship to distribution of Massive Stars in the Galaxy
- Wrap-up

OVERVIEW

Herschel datasets point toward a scenario in which the onset of high-mass star formation (HMSF) is associated with locations where mass inf bw and <u>accumulation of material</u> are particularly enhanced relative to the low-mass star formation case

- Convergence of f bws (e.g., Nguyen Luong+ 11; Hennemann+ 12)
- Association with supershells (e.g., Rygl+ 14)
- Intersection of f laments (e.g., Schneider+ 12)
- Stellar feedback (e.g., Minier+ 13; Russeil+ 13; Rivera-Ingraham+ 13; 15; 17)

Herschel Studies Discussed Here

- MC Environment (>1pc scale), e.g., Rivera-Ingraham+ 15
- Clumps (0.5-1pc scale) +
 Filaments (e.g., Rivera-Ingraham+
 15; 16)
- MDCs (0.1pc scale):
- (Rivera-Ingraham+ 17a, subm) Complete catalogue
 - Evolutionary classification
 - Characterization (stellar content, physical properties)
- **Statistical Studies** (Rivera-Ingraha. 17b, in prep)
 - Comparisons of HMSF regions in different parts of the galaxy

- Herschel imaging survey of OB Young Stellar objects - (HOBYS; PI. F. Motte). In depth region analysis
- the Herschel infrared Galactic Plane
 Survey (Hi-GAL; Pl. S. Molinari)
 Statistical analysis of fields

HERSCHEL

5

CURRENT STUDIES

Used Herschel/PACS and SPIRE data maps – 70, 160, 250, 350 and 500 I m. Typically areas few degrees2. For large-scale/more diffuse structures:

- Determine offset to pipeline product based on Planck/IRAS large-scale information.
- Remove background/foreground ISM components using HI and CO (see Tige+ 17).
- Use point-to-point information at 4 wavelengths to ft greybody (∩=2) dust model.
- Map resolutions of 36".
- For clumps and cores:
- Temperature and column density/Av maps at 18" resolution used for core extraction (HOBYS standard)
- Extraction of f luxes using getSources routine (Men'shchikov+ 12).
- Greybody dust model ft for temperatures and mass determinations (including well-known distances).

High Mass Star Formation in W3 GMC

CURRENT STUDIES

esa

- We have produced a global catalog of cores of W3 (Rivera-Ingraham+ 17)
 - HMSF shown previously to be within 3 main clumps (W3 east, west and W3 (OH) – Rivera-Ingraham+ 13)
 - <NH2peak >= 1.7x1023cm-2, <NH2-env >=4.6x1022cm-2, <Mass >= 365M@ Rivera-Ingraham+ 17

6

Evolution of Clump Environments

8

Clump Conditions

9

EVOLUTION

High central NH2.

Deep gravitational well (core mass) [CONTAINMENT]

Environment mass \rightarrow a signif cant, long-lasting supply of material

- Continuous assembly with large gas supply [MASS ACCRETION, GROWTH]
- * Replenishment

 $\alpha \Delta env3/4$

- Counteracts feedback/disruption
- Provides conf nement needed w/ minimal disruption (e.g. Dale & Bonnell 11)

 $P \alpha < NH2-env>2$

(McKee &Tan 03)

Γ	Parameter	All	Active	Inactive	Inactive	Inactive
			[IR-bright]	[IR-quiet+starless+UCS]	[IR-quiet]	[Starless]
	Number	442	3	30	10	6
	Mass $[M_{\odot}]$	25 ± 3	324 ± 251	126 ± 9	118 ± 16	107 ± 10
TH.	$\langle T[K] \rangle$	16.4 ± 0.3	34.7 ± 5.2	14.1 ± 1.2	11.7 ± 0.9	12.7 ± 3.2
	$L_{\rm FIR}$ $[L_{\odot}]$	268 ± 106	24721 ± 6879	666 ± 226	80 ± 53	828 ± 821
					= 0.030	0.238 ± 0.052
					: 0.02	0.18 ± 0.02
					= 0.7	0.7 ± 0.2
1.00					= 0.7	1.4 ± 0.7
					= 0.4	1.3 ± 0.5
					= 1.1	2.6 ± 1.9
		 			ni - i i i i i i i i	
	÷	۸۵ H	* * 1		≜ Δ Δ Δ	
	100-		¥			a long
		^ ^ A &				
	[6] [A 4 4	*. :			
	5 -		× 1			
	≤ 10 ≤ △			5		
						1
			× 1		۵ ۵	
	0.1 1.0	10.0 100 M [W]	0.0 1000.0	0.1 1.0	10.0 100.0	1000.0
		m [az⊛]				

HOBYS W3 study, Rivera-Ingraham+ 17

HOBYS W3 study, Rivera-Ingraham+ 17

		and the second second second			
Parameter	All	Active [IR-bright]	Inactive [IR-quiet+starless+UCS]	Inactive [IR-quiet]	Inactive [Starless]
Number	442	3	30	10	6
Mass $[M_{\odot}]$	25 ± 3	324 ± 251	126 ± 9	118 ± 16	107 ± 10
$\langle T[K] \rangle$	16.4 ± 0.3	34.7 ± 5.2	14.1 ± 1.2	11.7 ± 0.9	12.7 ± 3.2
$L_{\text{FIR}}[L_{\odot}]$	268 ± 106	24721 ± 6879	666 ± 226	80 ± 53	828 ± 821
				± 0.030	0.238 ± 0.052
				± 0.02	0.18 ± 0.02
				± 0.7	0.7 ± 0.2
				= 0.7	1.4 ± 0.7
				= 0.4	1.3 ± 0.5
				± 1.1	2.6 ± 1.9

- *NH2(peak) [bright/quiet] ~11
- ★ FWHM [quiet/bright] ~2
- ★ n [bright/quiet] ~7
- * NH2(env) [bright/quiet] ~2.5

"Vertical" evolution, e.g. Molinari+ 08

Parameter	All	Active [IR-bright]	Inactive [IR-quiet+starless+UCS]	Inactive [IR-quiet]	Inactive [Starless]
Number	442	3	30	10	6
Mass $[M_{\odot}]$	25 ± 3	324 ± 251	126 ± 9	118 ± 16	107 ± 10
<t [k]=""></t>	16.4 ± 0.3	34.7 ± 5.2	14.1 ± 1.2	11.7 ± 0.9	12.7 ± 3.2
$L_{\text{FIR}}[L_{\odot}]$	268 ± 106	24721 ± 6879	666 ± 226	80 ± 53	828 ± 821
				± 0.030	0.238 ± 0.052
				± 0.02	0.18 ± 0.02
				± 0.7	0.7 ± 0.2
				= 0.7	1.4 ± 0.7
				= 0.4	1.3 ± 0.5
				= 1.1	2.6 ± 1.9

- *NH2(peak) [bright/quiet] ~18.5
- ★ FWHM [quiet/bright] ~1.5
- * n [bright/quiet] ~9.5
- * NH2(env) [bright/quiet] ~4

[also see Tige+ 17]

HOBYS W3 study, Rivera-Ingraham+ 17

esa

EVOLUTION

Supports.....

Large Scale Grav. collapse model

IR bright MDCs: In W3 estimate lifetime ~ 105 yrs, for 100M accumulation : 10-3M)/yr

(in agreement with mass accretion rate based on core environment)

<u>Starless/IR-quiet</u>: shorter lifetime or nonexistent HMSF

Evolution with core mass growth

A SWITCH FOR HMSF [?]

BIMODALITY IN HMSF

If M criterium is the key , then...

Gravity (Large Scale Collapse) Easiest way, most common

- Most common
- (extended) LMSF coeval with HMSF (youngest)
- Age distribution, primordial mass segregation

e.g., CCF Model (Rivera-Ingraham+ 13)

Externally Driven SF Mode (direct triggering)

BIMODALITY IN HMSF

BIMODALITY IN HMSF

MASSIVE STAR DISTRIBUTION

Considerable substructure based on X-ray emitting population No evidence for mass segregation. No evidence massive stars are in regions of higher local density. Cyg OB2 has always been a substructured, unbound association (Wright+ 14) No obvious expansion from PMs (Wright+ 16)

MASSIVE STAR DISTRIBUTION

O/WR stars towards Galactic Center (Mauerhan+ 11b)

~70% of WR/LBV stars are NOT found within 4 stellar cluster radii (Rosslowe & Crowther 17). In loose OB assocns./in f eld. Also note Marston+ 15; 16.

Example 2MASS Ks band images of "new" WR stars (Mauerhan+ 11a)

Possible Causes of Distributed Massive Stars

Massive star expulsion from young clusters. Binaries in SNe?

Low mass clusters ~10²-10³ MO.

Distributed/more isolated – e.g. via triggered SF.

Conclusions

SUMMARY & FUTURE PROSPECTS

24 CHERSCHEL

OVERVIEW

- Unique processes associated with conditions and onset of HMSF
- Environment conditions are important
- HMSF requires a column density threshold
- Potential rather than M relation to HMSF
- Containment needed
- HMSF can take time not necessarily first stars
- Clusters not essential to HMSF
- High mass stars distribution changing perspective with less clustering.

HMSF Models

OVERVIEW

THEORETICAL CHALLENGES

Evolution: Mechanism, pre-stellar cores?...

Physics: e.g., Radiation pressure

Preferential Cluster formation

Cluster primordial mass segregation and age distribution

Bimodality? Threshold?

OBSERVATIONAL CHALLENGES

Large Distances (kpc - Resolution) Rare (Statistics) Disruptive Short lifetimes Highly-embedded (IR/submm) Highly Clustered (Resolution)

OVERVIEW

Clumps and Filaments

HOBYS W3 study, Rivera-Ingraham+ 17

MASSIVE STAR DISTRIBUTION

New WRs (and O stars) on the 'edge' of RCW49 – scattered out from Westerlund 2 cluster?

Roman-Lopes+ 11a,11b

