Galactic Center Star Formation

Jens Kauffmann Max–Planck–Institut für Radioastronomie SFDE17, Qui Nhon, Vietnam • 2017 August 7 unusually dense molecular clouds

black hole

unusually dense clusters

talk seeks to provide overview and context for these objects

extreme star-forming regions

Context: Inner Milky Way

Central Bar out to ~3 kpc radius feeding the innermost region

Central Molecular Zone (CMZ) innermost ~200 pc ($|\ell| < 1.5$ deg) largely molecular gas main focus of this review

Central Engine region within few pc of Sgr A* not covered here

The CMZ Star Formation Problem

 \Rightarrow star formation in dense gas is suppressed

Outline & References

topics of this review:

- distribution of young stars and gas in the CMZ
- physical processes in CMZ Clouds
- suppression of CMZ star formation

most material detailed in proceedings of IAUS322

this in particular includes references

see arXiv:1611.07022

Kauffmann (2017)

Gas and Stars in the CMZ

Gas and Stars in the CMZ

observations of star formation

Hard to probe the Center in IR Bands

extreme foreground obscuration: $A_{K} \approx 2 \text{ mag} \Rightarrow A_{V} \approx 20 \text{ mag}$

Spitzer little help:

sensitive to $L_{int} \gtrsim 10^3 L_{sun}$ in "regular" clouds ...but some clouds are opaque even at 70 μ m

⇒ can only probe high–mass stars, using wavelengths $\ge 2 \ \mu m$

High–Mass Stars in IR Bands

cluster properties:

- total of 200 OB stars
- 2×10⁴ M_{sun} in 0.4 pc radius (e.g., in Arches)
- unusual but not exceptional — in Milky Way

Spitzer, Hubble, Chandra

High–Mass Stars in IR Bands

High-Mass Stars in IR Bands

Spitzer: An asymmetric Distribution of Young Stars?

...or maybe just main-sequence stars illuminating clouds? Koepferl et al. (2015)

Star Formation at Radio Wavelengths

Star Formation at Radio Wavelengths

Star Formation Tracers: A Summary

=> total ~0.1 M_{sun} yr⁻¹ in $|\ell| < 3 \text{ deg}$

=> ~10% of SF in Milky Way

Gas and Stars in the CMZ

~ $5 \cdot 10^7 \text{ M}_{\text{sun}}$ in $|\ell| < 3 \text{ deg}$ ~ $2 \cdot 10^7 \text{ M}_{\text{sun}}$ in $|\ell| < 1 \text{ deg}$

model: point mass on orbit

problem:

 need to feed orbit for ~4 Myr with source not changing in position or injection velocity (strict interpretation)

Lucas (2015)

 must dump ~10⁷ M_{sun} on orbit in single event (workaround)

Jens Kauffmann MPIfR

model: hydrodynamical flow

Gas Distribution is Asymmetric

Gas Distribution is Asymmetric

Gas Distribution is Asymmetric

asymmetries naturally arise in hydrodynamical flows

Jens Kauffmann • MPIfR

Gas and Stars in the CMZ

Connection between Gas and Stars

Progression of Star Formation along Kruijssen et al. Orbit?

idea:

close passage to Sgr A* triggers SF via compression

Longmore et al. (2013) Kruijssen et al. (2015)

plausible in the "dust ridge" (but not proven)

Counter Example: SF ahead of Passage near Sgr A*

Kauffmann et al. (2016a,b)

"mature" star–forming cloud containing HII regions and H₂O masers

but 0.2 Myr to go until passage near Sgr A*

 \Rightarrow star formation ahead of supposed trigger

Global Evolution along Orbit

no obvious trend along orbit> no evolutionary timeline along orbit

SF triggering near Sgr A* does not describe CMZ well

Global Evolution: NH₃ seen by the VLA

study of various NH₃-derived cloud properties mixed evidence for global evolution

Krieger et al. (subm.)

Anticorrelation between Stars and Gas?

...or maybe just main-sequence stars illuminating clouds? Koepferl et al. (2015)

Physical Processes in CMZ Clouds

SiO 86.85 GHz

Original Research: Single–Dish Studies

Jens Kauffmann • MPIfR

Recent Development: Resolved Views of CMZ Clouds

Surveys with Interferometers

Galactic Center Molecular Cloud Survey (GCMS): ALMA (~30h), SMA (~100h), CARMA (~100h) includes first high–resolution study of all major CMZ clouds

Kauffmann et al. (2013a, 2017a,b)

numerous studies of selected fields:

using ALMA, VLA, and SMA

Rathborne et al., Mills et al., Lu et al., Walker et al., Kendrew et al., Yusef–Zadeh et al.

CMZoom: SMA (~500h) covers all area at high column density Battersby, Keto et al. (in prep.)

C-band survey: VLA (~3h) covers all area at high column density Lu et al. (in prep.)

gas is warm ($T_{gas} = 50-100 \text{ K}$)

thermal Jeans Mass high

Observations of Gas Temperatures

clouds are not disrupted by tidal forces

Galactic Center Tides

classical treatment:

=> no limit on cloud density

Jens Kauffmann • MPIfR

clouds are dense due to confining pressure(?)

High Thermal Plasma Pressure confining Clouds.

Red: Si-S Ponti et al. (2015) Green: S-Ar 0.400 Blue: Ar-Ca Galactic latitud -0.200 -0.400 -0.600 0.000 1.500 0.500 359.500 1.000 359.00

Galactic longitude

hot plasma from X-ray data

=> confining pressure

in pressure equilibrium:

$$egin{array}{ll} {\cal T}_{
m plasma} &= 10^7 \ {
m K} \ , & n_{
m plasma} \sim 0.1 \ {
m cm}^{-3} \ \ \Rightarrow & n_{
m dense} = 10^4 \ {
m cm}^{-3} \cdot (\,{\cal T}_{
m dense}/100 \ {
m K})^{-1} \end{array}$$

359.000

clouds are — probably — highly disturbed

Cartoon of CMZ Orbits

Cartoon of CMZ Orbits

Si0 86.85 GHz

Simulation of CMZ Orbit Dynamics

Shocks also prevail in Clouds

Kauffmann et al. (in prep.)

clouds have steep linewidth-size relations

(calm cores in turbulent clouds)

"Calm" Dense Cores in "turbulent" Clouds

moderate turbulence on spatial scales ≲1 pc!

unusually steep linewidth–size relation

Kauffmann et al. (2013a,b) Kauffmann et al. (2016a,b)

bound cores reside in marginally bound clouds

Bound Cores within Marginally Bound Clouds

moderate gravitational binding

compared to HMSF clouds in the plane

(second Larson rel.)

Pillai et al. (2011) Li et al. (2013) Kauffmann et al. (2013a,b) Kauffmann et al. (2016a,b)

turbulence primarily solenoidal

(in contrast to rest of Milky Way)

Relation between Density Fluctuation and Velocity Dispersion

nature of turbulence in CMZ might be different from rest of Milky Way

magnetic support is strong

Magnetic Fields in CMZ Clouds

Pillai, Kauffmann et al.

MPG & MPIfR Press Release 1/2015

dust polarization observations: ~5500 µG in G0.253+0.016

Pillai et al. (2015)

strong magnetic fields in CMZ! comparable to "turbulent" pressure

this might suppress fragmentation and delay collapse

CMZ clouds contain few dense cores

First Resolved Views of a CMZ Cloud

Jens Kauffmann • MPIfR

Absence of Dense Cores: Not an Issue of Sensitivity

Summary of Density Structure

Summary of Density Structure

mass-size analysis

Suppression of Star Formation in Dense Gas

Suppression of Star Formation in Dense Gas

concept: star formation thresholds

Association of Young Stars and Dense Gas

observation:

young stars reside near dense gas

challenge:

exact definition of "dense gas"

Association of Young Stars and Dense Gas

one possible choice:

define "dense gas" as material at $A_V > 7$ mag => then $N_{YSO} \propto M_{dense}$

then $A_V = 7$ mag can be considered a threshold...

...but SF above this threshold is inefficient!

 M_{YSO} / $M_{dense} \approx 0.06$

Suppression of Star Formation in Dense Gas

observational evidence in CMZ

An Example: G0.253+0.016 vs. Sgr B2

CMZ in Context of Milky Way

Star Formation Rate in Dense Gas

Suppression of Star Formation in Dense Gas

connection to extragalactic research
Observations in Nearby Galaxies 10^4 $\Sigma_{\text{star}} (M_{\text{sol}} \text{ pc}^{-2})$

maybe also not universal in galaxies

Suppression of Star Formation in Dense Gas

processes to suppress star formation

Possible Mechanisms

"intermediate" explanation:

clouds contain few dense cores...

...but what is the reason for that?

list of potentially relevant factors:

- turbulence (but how driven?)
- high gas temperature, high thermal Jeans mass
- strong magnetic fields
- tidal forces
- cloud–cloud interactions on orbit

(too) many possible explanations!

Jens Kauffmann • MPIfR

Possible Mechanisms

list of potentially relevant factors:

- turbulence (but how driven?)
- high gas temperature, high thermal Jeans mass
- strong magnetic fields
- tidal forces
- cloud–cloud interactions on orbit

(too) many possible explanations!

Jens Kauffmann • MPIfR

Summary: Star Formation in CMZ

Summary: Enabling Technologies

interferometers resolving clouds

