Star formation in high-redshift galaxies

Jacqueline Hodge Leiden Observatory

SFDE17 Quy Nhon,Vietnam 10 Aug 2017

Observing the distant Universe

Star Formation History of the Universe

How did galaxies form their stars?

The 'main sequence' of galaxy formation

e.g., Salmon+2015

MS galaxies are rotation dominated

e.g., Wisnioski+16

Morphology of MS galaxies: Clumps

IFU spectroscopy

UV imaging

e.g., Guo+2015

Hα

e.g., Genzel+2011

Molecular gas

e.g., Tacconi+2010

+

v = +73 km/s

c.f. Stellar Mass

Wuyts+2012

Star Formation History of the Universe

Long-wavelengths trace dust-obscured star formation

The cosmic molecular gas density

High-z molecular gas detections

Most high-z gas/dusty SF unresolved

Star formation law

Evidence for two sequences out to high-z – is it real?

> A CO-to- H_2 conversion factor $(\alpha_{\rm CO})$ is assumed

Star formation at high-redshift Recent results

- Submillimeter-selected
- Color-selected
- > (Sub-)millimeter deep fields

SMG formation challenges theorists

Many SMGs contain multiple galaxies

SMA Primary Beam

ALMA ('ALESS')

Hodge+13

PdBl

Smolcic+12

- A significant fraction (~30%) of singledish submillimeter sources are multiples
- Precisely locating the submm emitters is key for getting redshifts (a prerequisite for studying physical properties!)

Many on galaxy main sequence

Da Cunha+15 (using ALMA ID's):

Fraction on MS increases with z

See also Michalowski+17; Koprowski+16

Dusty SF is compact

Dusty SF is disky

Median Sersic index $n = 0.9 \pm 0.2$

Stark contrast with existing stellar populations

Hodge+16

May have implications for SED fitting routines assuming colocated dust

Stark contrast with existing stellar populations

Chen, JH+17

Implies geometrical effects may be partly responsible for offset from local IRX- β relation

Is the dusty SF clumpy?

lono+16

Would imply extreme SFRSDs of up to 6000 M yr⁻¹ kpc⁻²

-0.10

-0.05

0.00

Offset [arcsec]

0.05

Oteo+17

0.10

Is the dusty SF clumpy?

Hodge+16

Resolution 0.12" (1.0 kpc)

Consistent with smooth exponential disks

Is the dusty SF clumpy?

Resolution 0.03" (200pc) Gullberg+17 (in prep)

Also consistent with smooth exponential disks

Caution should be exercised when identifying clump candidates in interferometric data of such S/N

Cold gas extends further than dust

Calistro Rivera, JH+17 (in prep)

CO(3-2) contours on HST-WFC3/ACS

$R_{eff,CO}$ range from 2.5-7 kpc

(And can show large offset to stars)

Chen, JH+17

Implies higher SFE in center

Hodge+15

Implies higher SFE in center

With ALMA: 0.6 hours

Chen, JH+17

Is the gas clumpy?

Dynamically constraining α_{CO}

Calistro Rivera, JH+17 (in prep)

The resolved star formation law

→ High-z SMGs have high SF efficiencies on small scales

A universal star formation law?

Star formation at high-redshift Recent results

- > Submillimeter-selected
- Color-selected
- > (Sub-)millimeter deep fields

Evolving cold gas fraction

See also Magdis+12, Tacconi+13, etc

SFR/ISM content dependencies

Resolving CO in 'normal' galaxies

Aravena+14

Even with ALMA, this requires a substantial time investment

Resolved [CII] at z=7

Smit+17

Star formation at high-redshift Recent results

- > Submillimeter-selected
- Color-selected
- > (Sub-)millimeter deep fields

What will ASPECS LP deliver?

Summary

- Huge progress in understanding star formation at highredshift
- We can now not only correctly identify galaxies (not trivial!), but also resolve their cold gas and dust on ~kpc scales
- Recent efforts constrain both the evolution of the cold gas density, as well as its contribution to the shape of the cosmic SFRD
- ALMA will allow resolved studies of the gas/dusty SF in galaxies further down the LF