Can we trace magnetic fields via polarized emission by PAHs?

UST

Thiem Hoang, 2017, ApJ, 838, 112 (theory)

H Zhang, CW Telesco, Thiem Hoang et al., 2017, ApJ, 844, 6 (observation)

SFDE17, Quy Nhon, August 6-11, 2017

Interstellar Polycyclic Aromatic Hydrocarbon (PAH) Molecules

PAH: big molecules or very small dust grains

Image Credit: NASA/JPL-Caltech/T. Pyle (SSC)

PAH Absorption and UV Extinction Bump

Draine 2003

Mid-IR Emission from PAHs

Physics of IR Emission by PAHs

In-plane stretching modes (C-C, C-H)
Out-of-plane bending modes (C-H)

Is Emission by PAHs Polarized?

Can PAHs be aligned? What is the polarization of PAH emission?

PAH magnetism: ideal PAH are not paramagnetic

Astrophysical PAHs can get magnetized due to defects

C vacancy creates unpaired electrons H adsorption

H adsorption incudes magnetic ordering

C vacancy

Yazyev & Helm 2007

Paramagnetic PAHs can be aligned by resonance paramagnetic relaxation (Lazarian & Draine 2000)

Simulations of PAH Alignment

Evolution of angular momentum J in the lab frame:

$$dJ_{i} = A_{i}dt + \sqrt{B_{ii}}dq_{i}, i = 1 - 3$$
$$A_{i} = \sum_{k} \left\langle \frac{\Delta J_{i}^{k}}{\Delta t} \right\rangle, B_{ii} = \sum_{k} \left\langle \frac{(\Delta J_{i}^{k})^{2}}{\Delta t} \right\rangle, \left\langle dq^{2} \right\rangle = dt$$

- Damping and excitation coefficients (A_i & B_{ii})
 - resonance paramagnetic relaxation
 - grain-neutral collision
 - grain-ion collisions
 - infrared emission
 - plasma drag by passing ions
- Degrees of alignment:

 $Q_J(J,B) = \langle G_J \rangle, Q_X(a_1,J) = \langle G_X \rangle, R = \langle G_X^*G_J \rangle$

with $G_J = [3\cos^2\beta - 1]/2$, $G_X = [3\cos^2\theta - 1]/2$

e₃ a₁ R Q_J B B

Hoang, Lazarian, Martin, 2013, ApJ

Alignment of PAHs in Reflection Nebula

 \circ Degree of PAH alignment increases with increasing $x_{\rm H}$ \circ Alignment degree rises toward smaller sizes

New Model of Polarized IR Emission by PAHs

References:

Hoang Thiem, 2017, ApJ, 838, 112 (theory)

Han Zhang, Charles Telesco, Hoang Thiem, et al., ApJ, 844, 6 (observation)

Physics of Polarized IR Emission by PAH

Out-of-plane emission mode

sky-plane

u

Absorption cross-section

 $A = \langle E_{inc}.d_{abs} \rangle$,

 \mathbf{d}_{abs} absorption dipole on PAH plane

Emission cross-section

$$F_w = \langle w.d_{em} \rangle$$
, $w = u$, v

Case 1: J parallel to
$$a_1$$

 $I_{u,\parallel} = \sum_{i=1}^{3} W_i A_i F_u = \frac{1}{3},$

$$W_{i}=1/3$$
 for iso , $I_{v,\parallel}=\sum_{i=1}^{3}W_{i}A_{i}F_{v}=rac{1}{3}2,$

Polarization degree

 $p = (I_u - I_v)/(I_u + I_v) = -1/3 \sim -33\%$. Too large

A general Model of Polarized PAH Emission

O Two main physical effects:

1. Thermal fluctuations, before and after UV absorption. PAH axes not tied to **J** (*Leger 1988, Sironi & Draine 2009*).

2. Alignment of J with B-field (Hoang 2017b)

13

New Model: Effect of PAH alignment with B-field

Polarization degree

$$p^{\parallel,\perp}(\alpha,\psi) = \frac{I_u^{\parallel,\perp}(\alpha,\psi) - I_v^{\parallel,\perp}(\alpha,\psi)}{I_u^{\parallel,\perp}(\alpha,\psi) + I_v^{\parallel,\perp}(\alpha,\psi)},$$
(3)

Hoang Thiem 2017, ApJ, 838, 112

Polarized Mid-IR Emission from Reflection Nebula

 ${\rm O}$ Degree of polarization increases with increasing $x_{\rm H}$

O Polarization rises toward smaller PAHs

O At typical $x_H=10^{-3}$, P ~ 4%

Polarization degree vs. PAH alignment

Polarized IR emission from the diffuse ISM

- O Model: Dust temperature T_o changes, gas density and ionization x_H constant
- ${\rm O}$ Degree of polarization increases with decreased $T_{\rm o}$
- Peak polarization occurs at a ~ 10 A
- **O** At typical T_0 =60K, P < 1%
- Our P is much larger than the result from Sironi & Draine (2009) model with random J

- ${\rm O}$ Degree of PAH alignment increases with decreasing $T_{\rm o}$
- Peak alignment degree at a ~ 10 A

Polarization angle and B-field direction

In-plane emission mode: P perp. to B-field
Out-of-plane emission mode: P along B-field

First Detection of Polarized Emission at 11.3 micron

Confirmation of PAH alignment with B-field

H Zhang, CW Telesco, Hoang Thiem et al., 2017, ApJ, 844, 6

Polarized PAH Emission from MWC 1080

Out-of-plane (C-H) mode: 11.3um

Han, Telesco, Hoang, et al. 2017 Using CanariCam/GTC telescope

Pol degree consistent with our predictions

Theoretical Predictions

Pol angle along B-field, as predicted

Polarization vector is along the ambient magnetic field as predicted
 Evidence for PAH alignment with the B-field

Golden Age of CMB Polarimetry: Measuring Gravitational Waves with CMB B-Modes

CMB Polarization by BICEP2 // CMB: Cosmic Microwave Background

The extended CMB polarimetry family

Spindust polarization: a challenge for CMB Bmodes detection

Polarized intensity (Planck Collaboration et al. 2016, I. Overview of products and scientific results, lu: 73-93% sky)

Polarization of spinning PAH Emission

Hoang and Lazarian (in prep)

Polarization of spinning nanosilicate emission

Hoang, Vinh, & Lan 2016, ApJ, 824, 18

Spinning PAH and Magnetic Dust can reproduce the AME polarization

Theoretical predictions vs. Observations

ratio by more than 1σ . For sensitive CMB experiments, omitting in the foreground modelling a 1% polarized spinning dust component may induce a non-negligible bias in the estimated tensor-to-scalar ratio. Simulations by Dickinson's group

Summary

- PAHs are important for IR emission, UV bump, and AME
- PAHs can be aligned by paramagnetic relaxation
- A new model of polarized PAH emission is developed, incorporating PAH alignment with the magnetic field
- First detection of polarized PAH emission, consistent with theoretical predictions by PAH alignment with B-field
- A new way to trace magnetic fields via Mid-IR Pol, good in RNe and and circumstellar disks
- Polarization of AME by PAHs and nanoparticles cannot be negligible, a serious challenge for CMB B-mode detection.

Thiem Hoang, 2017, ApJ, 838, 112 (theory)

H Zhang, CW Telesco, Thiem Hoang et al., 2017, ApJ, 844, 6 (observation)

Thank You Very Much!

Physics of Polarized Mid-IR Emission

sky-plane

u

Case 2: J perp to a_1 (i.e., parallel to a_2)

$$egin{aligned} &I_{u,\perp} = \sum_{i=1}^{3} W_i \langle A_i
angle \langle F_u
angle &= rac{1}{3} (1/2 + 3/4) = rac{5}{12}, \ &I_{v,\perp} = \sum_{i=1}^{3} W_i \langle A_i
angle \langle F_v
angle &= rac{1}{3} (3/4 + 3/4) = rac{6}{12}, \end{aligned}$$

Polarization degree

V

 $p = (I_u - I_v)/(I_u + I_v) = -1/11 \sim -9.1\%$

p>0: p along u-direction
p<0: p along v-direction</p>

Original Model of Polarized Emission: Leger (1988)

Model assumptions:

•Randomly oriented J $f(J) \propto \delta(J-J)$

ODamping and excitation by gas collisions and IR emission only **Results:**

 $\langle J^2 \rangle \rangle J^2_{th}$, large Pol

Sellgren+1988: No Detection

elongation $a/b = \sqrt{I_2/I_1}$		In-Plane streching (3.3 µm)	In-Plane bending (8.6 µm)	Out-of-Plane bending (11.3 µm)
Analytical or numerical	1	1.9	1.9	-3.7
numerical	12	1.6	1.8	-3.4
	1.5	1.2	1.7	-2.8
	2.0	0.7	1.7	-2.4
	3.0	0	2.3	-2.2
	10	-2.1	5.2	-3.0
	30	-3.2	6.9	-3.5
nalytical	00	-3.7	7.8	-3.7

TABLE 3 - Calculated polarization (%) for the three different C-H modes versus $(I_2|I_1)^{1/2}$ in a geometry where $\alpha = 90^{\circ}$.

Revisited Model of Sironi & Draine (2009)

Model assumptions:

 Randomly oriented J
 Damping and excitation by collisions, IR, rotational emission damping

Results: Much lower pol

Selected Cases for a Disk Molecule with $N_{\rm C} = 200$ Parameter Case (b) Case (a) Case (c) Case (d) **CNM** Orion Bar STR $\hat{\mathbf{a}}_1 \parallel \mathbf{J}$ $T_{\rm rot}$ (K) 80 220 1000 ∞ T_0 (K) 65 150 60 . . . 1.2 1.5 17 γ_0 ∞ $\gamma_r(3.3 \ \mu m)$ 0.10 0.28 1.3 ∞ $\gamma_r(7.7 \ \mu m)$ 0.27 0.73 3.3 ∞ $\gamma_r(11.3 \ \mu m)$ 0.40 1.1 5.0 ∞ 0.67 $\gamma_r(17 \ \mu m)$ 1.5 8.3 ∞ $p_{\star}^{\parallel}(\pi/2), 3.3 \ \mu m \ (\%)$ 0.02 0.06 1.29 7.69 $p_{\star}^{\parallel}(\pi/2), 7.7 \ \mu m \ (\%)$ 0.05 0.17 3.29 7.69 $p_{\star}^{\perp}(\pi/2), 11.3 \ \mu m \ (\%)$ -0.14-0.53-8.56-14.29 $p_{\star}^{\perp}(\pi/2), 17 \ \mu \mathrm{m}(\%)$ -0.25-0.73-10.54-14.29

Table 1

Polarization vs. Magnetic Field Direction

Magnetic Alignment of PAH with Magnetic Fields

PAHs are paramagnetic material, with unpaired electron spins
 PAHs get magnetized via spinning: Barnett effect

(inverse of Einstein de-Hass effect)

Credit: Mamoru Matsuo

PAHs can be weakly aligned with the B-field via resonance paramagnetic relaxation (Lazarian & Draine 2000)

Polarization of spinning iron emission too high

Hoang & Lazarian 2016, ApJ, 821,91

PAHs as a carrier of Anomalous Microwave Emission: Spinning Dust

AME & Spinning dust:

Kogut et al. 1996, Leitch et al. 1997, Draine & Lazarian 1998, de-Oliveira Costa et al., Finkbeiner et al., Hoang et al., Dickinson et al

Nanosilicates are likely an important carrier of the AME (Hoang et al 2016, Hensley & Draine 2017)