The Role of Turbulene, Magnetic Fields and Feedback for Star Formation

Christoph Federrath SFDE – 8 Aug 2017

Australian Government

Australian National University

Optical

M51: The Whirlpool Galaxy Infrared

Infrared: NASA, ESA, M. Regan & B. Whitmore (STScI), & R. Chandar (U. Toledo); Optical: NASA, ESA, S. Beckwith (STScI), & the Hubble Heritage Team (STScI/AURA).

Star Formation is messy

Ster Formation is Inefficient. – Why?

Universal star formation "law"?

(Heiderman et al. 2010; Lada et al. 2010; Gutermuth et al. 2011; Kennicutt & Evans 2012)

Federrath - SFDE 2017

(Mach number, Driving, Virial parameter)

Federrath (2013, MNRAS 436, 3167)

 Scatter/Non-Universality caused by variations of the Turbulence (Mach number, Driving, Virial parameter)

Federrath – SFDE 2017

Federrath (2013, MNRAS 436, 3167)

Federrath (2013, MNRAS 436, 3167)

A Multi-Freefall Star Formation Law

Australian

National University

Turbulence is key for Star Formation

(Federrath & Klessen 2012; Federrath et al. 2016)

Turbulence \longrightarrow Stars \longrightarrow Feedback

Magnetic Fields

Turbulence driven by

Solenoidal

Compressive

- Shear - Jets / Outflows - Cloud-cloud collisions - Winds / Ionization fronts - Spiral-arm compression - Supernova explosions - Gravity / Accretion

Dynamics (shear)

Carina Nebula, NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA), and NOAO/AURA/NSF

Turbulence driving – solenoidal versus compressive

Star Formation depends on how turbulence is driven

Solenoidal driving

Compressive driving

Federrath - SFDE 2017

Turbulence driving – solenoidal versus compressive

Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/supersonic/supersonic.html solenoidal driving compressive driving

Compressive driving produces stronger shocks and density enhancements

(Federrath 2013, MNRAS 436, 1245: Supersonic turbulence @ 4096³ grid cells)

Federrath – SFDE 2017

The density PDF → Star Formation

Density PDF

log-normal:

$$p_s \, \mathrm{d}s = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{(s-\langle s \rangle)^2}{2\sigma_s^2}\right] \, \mathrm{d}s$$
$$s \equiv \ln\left(\rho/\rho_0\right)$$

Vazquez-Semadeni (1994); Padoan et al. (1997); Ostriker et al. (2001); Hopkins (2013)

$$\sigma_s^2 = \ln\left(1 + b^2 \mathcal{M}^2\right)$$

b = 1/3 (sol) b = 1 (comp)

Federrath et al. (2008, 2010); Price et al. (2011); Konstandin et al. (2012); Molina et al. (2012); Federrath & Banerjee (2015); Nolan et al. (2015)

The density PDF → Star Formation

No star formation

Active star formation

Kainulainen, Federrath, Henning (2014, Science)

The Star Formation Rate

Hennebelle & Chabrier (2011) : "multi-freefall model"

Federrath & Klessen (2012)

The Star Formation Rate

٦

Statistical Theory for the
Star Formation Rate:
SFR ~ Mass/time freefall mass
time fraction
$$Freefall mass
time fraction
SFR_{ff} = \epsilon \int_{s_{crit}}^{\infty} \frac{t_{ff}(\rho_0)}{t_{ff}(\rho)} \frac{\rho}{\rho_0} p(s) ds = \epsilon \int_{s_{crit}}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) ds$$

$$= \frac{\epsilon}{2} \exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + \exp\left(\frac{\sigma_s^2 - s_{crit}}{\sqrt{2\sigma_s^2}}\right)\right]$$

Hennebelle & Chabrier (2011) : "multi-freefall model"

Federrath & Klessen (2012)

The Star Formation Rate

Statistical Theory for the Star Formation Rate:

$$p(s) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{(s-s_0)^2}{2\sigma_s^2}\right)$$

$$s = \ln(\rho/\rho_0) \quad t_{\rm ff}(\rho) = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$$

$$s = \ln(\rho/\rho_0) \quad t_{\rm ff}(\rho) = \left(\frac{3$$

Federrath - SFDE 2017

The Star Formation Rate – Magnetic fields

 $\begin{aligned} & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{simulation}\right) = \mathbf{0.46} & \times \mathbf{0.63} & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{simulation}\right) = \mathbf{0.29} \\ & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{theory}\right) & = \mathbf{0.45} & \times \mathbf{0.40} & \mathsf{SFR}_{\mathrm{ff}}\left(\mathrm{theory}\right) & = \mathbf{0.18} \\ & \mathbf{Magnetic field \ reduces \ SFR \ and \ fragmentation \ (by \ factor \ \sim 2).} \\ & \mathsf{Padoan \ \& \ Nordlund \ (2011); \ Padoan \ et \ al. \ (2012); \ Federrath \ \& \ Klessen \ (2012)} \end{aligned}$

Federrath - SFDE 2017

Density PDF → Star Formation Rate

Federrath - SFDE 2017

Federrath & Klessen (2012)

Driving of turbulence in different galactic environments

Determine the driving in Galactic Centre (Federrath et al. 2016) vs. Galactic Disc

→ Recently applied to SAMI galaxy survey (Federrath et al. 2017, MNRAS 468, 3965, Zhou et al. 2017, in press)

Federrath - SFDE 2017

Brick (CMZ) – 1. Density PDF

 $b = \sigma_{\rho/\rho_0} \mathcal{M}^{-1} (1 + \beta^{-1})^{1/2}$

Brick (CMZ) – 1. Density PDF

$$b = \sigma_{\rho/\rho_0} \mathcal{M}^{-1} (1 + \beta^{-1})^{1/2}$$

° M

$$b = \sigma_{\rho/\rho_0} \mathcal{M}^{-1} (1 + \beta^{-1})^{1/2}$$

Brick (CMZ) – 2. Mach number

After subtracting gradient

Before subtracting gradient

Federrath – SFDE 2017

 \rightarrow 1D turbulent velocity dispersion 3.9 ± 0.1 km/s \rightarrow 3D turbulent Mach number 11 ± 3

Federrath et al. (2016)

$$b = \sigma_{\rho/\rho_0} \mathcal{M}^{-1} (1 + \beta^{-1})^{1/2}$$

Ordered (large-scale) B₀

Brick (CMZ) – 3. Magnetic field

Pillai, Kauffmann, et al. (2015)

Un-ordered (turbulent) B_{turb}

Brick (Central Molecular Zone) – Turbulence driving

 \rightarrow Solenoidal driving of the turbulence in the Brick (most likely shear)

Brick (Central Molecular Zone) – Turbulence driving

 \rightarrow Solenoidal driving of the turbulence in the Brick (most likely shear)

Brick (Central Molecular Zone) – Turbulence driving

 \rightarrow Solenoidal driving of the turbulence in the Brick (most likely shear)

Brick (Central Molecular Zone) – Star formation

Implications for Star Formation in Different Environments (SFDE)

 \rightarrow Theoretical prediction for SFR in Brick with measured b = 0.22:

$$SFR = (1.1 \pm 0.8) \times 10^{-2} M_{\odot} \,\mathrm{yr}^{-1}$$

Later measured for Brick: SFR = $0.7 \times 10^{-2} M_{\odot} \text{ yr}^{-1}$ (Barnes et al. (2017)

If driving parameter b were 0.5 (as in many nearby clouds), then SFR would be factor 7 higher!

Jet Feedback Subgrid Model

Federrath et al. 2014, ApJ 790, 128

List of SGS outflow parameters.

SGS Parameter	Symbol	Default	Reference
Outflow Opening Angle	$ heta_{\mathrm{out}}$	30°	[1]
Mass Transfer Fraction	$f_{ m m}$	0.3	[2]
Jet Speed Normalization ^{a}	$ \mathbf{V}_{\mathrm{out}} $	$100 {\rm km s^{-1}}$	[3]
Angular Momentum Fraction	f_{a}	0.9	[4]
Outflow Radius	$r_{ m out}$	$16 \Delta x$	Section 4

^a The outflow velocities are dynamically computed Notes. according to the Kepler speed at the footpoint of the jet, $|\mathbf{V}_{out}| = 100 \,\mathrm{km \, s^{-1}} (M_{sink}/0.5 \, M_{\odot})^{1/2}$ (see Equation 13). References: [1] Blandford & Payne (1982); Appenzeller & Mundt (1989); Camenzind (1990); [2] Hartmann & Calvet (1995); Calvet (1998); Tomisaka (1998); Bacciotti et al. (2002); Tomisaka (2002); Lee et al. (2006); Cabrit et al. (2007); Lee et al. (2007); Hennebelle & Fromang (2008); Duffin & Pudritz (2009); Bacciotti et al. (2011); Price et al. (2012); Seifried et al. (2012); [3] Herbig (1962); Snell et al. (1980); Blandford & Payne (1982); Draine (1983); Uchida & Shibata (1985); Shibata & Uchida (1985, 1986); Pudritz & Norman (1986); Wardle & Königl (1993); Bacciotti et al. (2000); Königl & Pudritz (2000); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Machida et al. (2008); [4] Pelletier & Pudritz (1992); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Hennebelle & Fromang (2008).

Outflow mass: $M_{\text{out}} = f_{\text{m}} M_{\text{acc}} \Delta t$ Outflow velocity: $|\mathbf{V}_{\text{out}}| = \left(\frac{GM_{\text{sink}}}{10 R_{\odot}}\right)^{1/2} = 100 \text{ km s}^{-1} \left(\frac{M_{\text{sink}}}{0.5 M_{\odot}}\right)^{1/2}$

Outflow angular momentum: $\mathbf{L}_{\mathrm{out}} = f_{\mathrm{a}} \left(\mathbf{S}_{\mathrm{sink}}' - \mathbf{S}_{\mathrm{sink}} \right) \cdot \mathbf{S}_{\mathrm{sink}}' / |\mathbf{S}_{\mathrm{sink}}'|$

Why is Star Formation is so Inefficient?

Movies available: <u>http://www.mso.anu.edu.au/~chfeder/pubs/ineff_sf/ineff_sf.html</u>

Turb

Turb+ Mag+ Jets

Star Formation is Inefficient

Only the combination of turbulence, magnetic fields and feedback gives realistic SFR

Federrath 2015, MNRAS 450, 4035

Federrath et al. 2014, ApJ 790, 128

Outflow/Jet feedback reduces average star mass by factor ~ $3 \rightarrow IMF!$

...but, IMF also needs stellar heating feedback!

Radiation feedback

Proto-/stellar evolution \rightarrow accretion/stellar luminosity \rightarrow heating

Offner et al. (2009)

A simple radiation feedback model

(Federrath, Krumholz, Hopkins 2017) Increasing resolution → convergence

01

\prec aulation feedback $\xrightarrow{\circ \circ}$ Converging on the IMF.

Mass M_{sink} [M⊙]

Mass M_{sink} [M⊙]

Stellar Heating Feedback

Federrath - SFDE 2017

Theoretical prediction:

\rightarrow We can determine the IMF

Primordial Star Formation (IMF of Population III Stars)

Important physics missing: no magnetic fields, no jet feedback

- \rightarrow Our simulation methods allow us to predict the Pop III IMF
- \rightarrow Indirect constraints on Pop III IMF: e.g., Norris et al. (2013)

and near future observations with LSST, JWST, GMT, E-ELT

1) Star Formation is complex and inefficient \rightarrow

Only the combination of

Turbulence + Magnetic Fields + Feedback

gives realistic (observed) SFRs

2) Measured turbulence driving parameter in The Brick (CMZ)

→ Solenoidal driving (probably caused by shear) may explain low SFR (predicted SFR \approx 0.01 M_☉/yr \approx 4% per freefall time)

3) Importance of magnetic fields and feedback for the IMF:
 Determine the Initial Mass Function (IMF) of Stars
 → Necessary physics:
 turbulence, magnetic fields, jet feedback and radiation feedback
 ...probably relevant also for Population III IMF